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Abstract

This paper describes an immersed boundary method that facilitates the explicit resolution of complex terrain within the 
Weather Research and Forecasting (WRF) model. Mesoscale models, such as WRF, are increasingly used for high-
resolution simulations, particularly in complex terrain, but errors associated with terrain-following coordinates degrade 
the accuracy of the solution. The use of an alternative-gridding technique, known as an immersed boundary method, 
alleviates coordinate transformation errors and eliminates restrictions on terrain slope that currently limit mesoscale 
models to slowly varying terrain. Simulations are presented for canonical cases with shallow terrain slopes, and 
comparisons between simulations with the native terrain-following coordinates and those using the immersed boundary 
method show excellent agreement. Validation cases demonstrate the ability of the immersed boundary method to handle 
both Dirichlet and Neumann boundary conditions. Additionally, realistic surface forcing can be provided at the immersed 
boundary by atmospheric physics parameterizations, which are modified to include the effects of the immersed terrain. 
Using the immersed boundary method, the WRF model is capable of simulating highly complex terrain, as demonstrated 
by a simulation of flow over an urban skyline.
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1. Introduction

Most mesoscale numerical weather prediction (NWP) models use terrain-following coordinates, which accommodate 
complex terrain by transforming the physical domain onto a Cartesian grid. Phillips (1957) first introduced this 
coordinate, using the variable sigma to represent the transformed vertical coordinate. This formulation simplifies the 
application of lower boundary conditions by aligning the lowest coordinate with the topography. Coordinate lines 
gradually become smoother and flatter with distance from the ground but retain a signature of the underlying surface 
shape throughout the entire height of the domain. Metric terms from the coordinate transformation are introduced into the 
governing equations, and when discretized these terms produce additional numerical errors (Janjic 1977; Klemp et al. 
2003). As mesoscale models are increasingly being used for high-resolution flows over complex terrain, these coordinate 
transformation errors can significantly degrade the quality of the numerical solution.

Several methods have been proposed to increase the fidelity of simulations with complex terrain, ranging from methods 
that reduce errors arising from coordinate transformations to methods that eliminate the need for coordinate 
transformations. Mahrer (1984) noted that the standard computational stencil used to calculate horizontal gradients is 
inappropriate when the vertical grid spacing is less than the elevation change over the horizontal dimension of the cell. In 
this case, the accuracy of horizontal gradients can be improved by modifying the stencil to include nodes that more 
closely follow a Cartesian grid. Schär et al. (2002) proposed a modified sigma coordinate in which grid distortion 
resulting from small-scale terrain features decays with height more rapidly than distortion caused by large-scale terrain 
features. The modified coordinate flattens quickly with height and improves the accuracy of the solution by reducing grid 
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distortion aloft. As terrain slopes approach the vertical limit, coordinate transformation errors grow, making reductions of 
these errors increasingly difficult.

In environments with very steep slopes, such as urban or mountainous environments, it is desirable to completely 
eliminate the coordinate transformation. One approach is to represent topography by fitting it to a Cartesian grid, thereby 
creating a step approximation of the boundary. Large errors have been documented when a zeroth-order terrain 
approximation is used to model topographically induced circulations (Fast 2003), whereas higher-order boundary 
representations alleviate these errors by eliminating the sharp corners (Adcroft et al. 1997). Structured or unstructured 
body-fitted grids are often employed for complex geometries because these methods are capable of higher-order boundary 
representations. Hanna et al. (2006) present simulations of downtown Manhattan with five different urban computational 
fluid dynamics (CFD) models, each using conforming grids. Although imposing boundary conditions on these grids is 
straightforward, there are drawbacks. Body-fitted coordinates require time-consuming manual manipulation to ensure that 
the grid conforms to the boundaries, while minimizing grid skewness. Unstructured grids produce an irregular data 
structure, which increases computational cost. In addition to these gridding issues, CFD models are traditionally forced at 
lateral boundaries with idealized flow, neglecting dynamic forcing resulting from synoptic-scale weather patterns. 
Furthermore, CFD codes do not generally include options for representing atmospheric processes such as surface fluxes of 
heat and moisture.

In this work, we introduce an immersed boundary method (IBM) to combine the favorable properties of an NWP code 
with the ability to handle complex terrain. The IBM enables flows with complex terrain to be simulated on nonconforming 
grids while retaining the efficiency of a structured solver and the features of an NWP code. Terrain is included by 
modifying the treatment of nodes near the immersed boundary to impose the effects of the surface. Numerous methods 
employ this technique and are known by a variety of names, including immersed boundary, embedded boundary, fictitious 
domain, penalty, and Cartesian-grid methods. The methods differ in the treatment of the nodes near the immersed or 
embedded boundary. The review articles by Iaccarino and Verzicco (2003) and Mittal and Iaccarino (2005) provide a 
comprehensive overview of existing methods for nonconforming grids, although they focus on the variants of the 
immersed boundary method.

The IBM presented here represents a rigid interface at the boundary using direct forcing, as first suggested by Mohd-
Yusof (1997). This IBM is uniquely formulated to handle compressible viscous flows and to work with the native isobaric 
terrain-following coordinate in the Weather Research and Forecasting (WRF) model. The newly developed algorithm 
accommodates movement in the vertical pressure coordinate while remaining well conditioned and avoids numerical 
instabilities noted in other immersed and embedded boundary approaches (Saiki and Biringen 1996; Tseng and Ferziger 
2003; Kirkpatrick et al. 2003). Details of the WRF model and the IBM implementation are provided in sections 2 and 3. 
The IBM is capable of enforcing either Dirichlet or Neumann boundary conditions. A comparison of the native WRF and 
IBM–WRF boundary conditions is made in section 4, along with the details of a new no-slip option for terrain-following 
coordinates.

An additional feature, distinguishing the IBM described here, is that it includes coupling to a land surface model, which 
provides realistic surface forcing. The IBM has been used for atmospheric flows in CFD codes (Tseng et al. 2006; 
Smolarkiewicz et al. 2007; Shi et al. 2008); however, to the authors’ knowledge this is the first IBM that interfaces with 
atmospheric parameterizations. The modifications required to include the atmospheric physics options are discussed in 
section 5. By retaining the native isobaric coordinate and coupling the IBM to the land surface model, NWP features such 
as grid nesting and atmospheric physics function seamlessly with the IBM. Domains where the IBM is used to explicitly 
resolve complex terrain can be nested into larger mesoscale domains, which use the terrain-following coordinate.

The accuracy of the immersed boundary solver is examined in section 6 by comparing the sigma-coordinate WRF and 
IBM–WRF solutions for canonical flows. Validation cases include two-dimensional pressure-driven flow over an isolated 
hill and idealized valley simulations with both specified and parameterized surface fluxes. Results are also presented for 
flow over two blocks of the New York City skyline, which demonstrate the method’s ability to handle extremely complex 
terrain with sharp corners and vertical terrain gradients.

2. Formulation of the numerical solver

a. Coordinate definition

Phillips (1957) first introduced terrain-following coordinates by using pressure as an independent variable representing 
the vertical coordinate. Laprise (1992) cast the fully compressible Euler equations in this coordinate by first transforming 
the equation into the hydrostatic pressure coordinate and then applying a second transformation into the terrain-following 
coordinates. The WRF model is based on this coordinate, which Laprise defines in terms of the dry hydrostatic pressure 
Phs. The coordinate is defined such that it is zero at the top of the computational domain and unity at the terrain surface. 
This yields the coordinate definition η = (Phs − Phs_top)/μ, where the column mass per unit area of the fluid is μ(x, y) = 
Phs_surface − Phs_top. Note that we refer to the coordinate as “eta” to be consistent with Laprise and the WRF model 
documentation (Skamarock et al. 2007), although the coordinate is more commonly referred to in the literature with the 
variable sigma.

With our implementation of the immersed boundary method, the sigma coordinate is retained. The grid is transformed 
to align with gently sloping background topography but does not conform to terrain that is explicitly resolved by the IBM. 
Topography is defined by the superposition of small- and large-scale features in domains using IBM. This concept is 
illustrated in Fig. 1, where urban-scale terrain is centered in a shallow valley. Pressure-based terrain-following coordinates 
are used to resolve the valley features in an outer, coarser grid domain. In a finer, nested domain, the valley floor is 
defined by the σ coordinate, whereas the buildings are represented with the IBM.

IBM is often used to eliminate coordinate transformations; however, in the case of flows within complex terrain, it is 
beneficial to use a hybrid methodology that combines the use of IBM with a transformed background coordinate. As the 
background sigma coordinate conforms only to gently sloping terrain, grid skewness and the associated errors are largely 
eliminated by using this IBM, although metric terms appear in the discretization for both the sigma WRF and the IBM
–WRF models. Use of a hybrid coordinate facilitates grid nesting and increases the flexibility of the model. Hybrid 
techniques for using IBM on a curvilinear grid have been pursued in aeronautical (Ghias et al. 2007) and cardiovascular 

Page 2 of 18AMS Journals Online - An Immersed Boundary Method for the Weather Research and Fo...

6/6/2014http://journals.ametsoc.org/doi/full/10.1175/2009MWR2990.1



(Ge and Sotiropoulos 2007) applications as well. A difference here is that additional complexities arise in the treatment of 
nodes near the immersed boundary because of the time-dependent pressure coordinate.

b. Governing equations

This work uses the Advanced Research WRF (ARW) model dynamics solver, which is a conservative finite-difference 
model that solves the nonhydrostatic compressible Navier–Stokes equations (Skamarock et al. 2007). The moist Euler 
equations are transformed into the isobaric terrain-following coordinate η, while additional terms such as diffusion, 
Coriolis, and parameterized physics (represented by F) are computed in physical space. A velocity η̇, defined as the 
contravariant velocity of the vertical coordinate, is introduced in the coordinate transformation, necessitating the solution 
of an additional equation. Perturbation variables are introduced to reduce numerical errors; the perturbations are defined 
as the deviation from a time-invariant hydrostatically balanced reference state. Pressure p, specific volume (moist αm and 
dry αd), geopotential ϕ, and dry column mass μd are cast as mean and perturbation values as φ = φ + φ′, where φ represents 
a generic variable and the overbar indicates the hydrostatic base state. After substitution into the momentum equations, the 
hydrostatically balanced terms cancel out. The transformed equations are given in Eq. (1): 

In the previous equations, the velocity vector is V = (u, υ, η), VH includes the horizontal velocities, and ∇η = (∂x, ∂y, ∂η) 
operates on coordinate surfaces. Geopotential is defined as ϕ = gz, so that ∇ηϕ is a substitute for the Jacobian term ∇ηz. 

In addition to conservation of mass and momentum, a conservation Eq. (2) is solved for additional scalar quantities, 
such as potential temperature θ, water vapor qυ, ice qi, and passive scalars, given here as 

Pressure is then diagnosed from the equation of state below, where γd is the ratio of heat capacities of dry air Cp/Cυ, po is 
the surface pressure, and Rd is the universal gas constant: 

c. Discretization schemes

The governing equations are discretized on an Arakawa-C staggered grid. Uniform grid spacing is used in the 
horizontal directions, and the grid may be stretched in the vertical direction. Second- through sixth-order finite-difference 
schemes are available for discretization of the advective terms. For the simulations presented here, the default finite-
difference scheme for advection is used, which is fifth order for horizontal derivatives and third order for vertical 
derivatives. Diffusive terms are calculated with a second-order scheme.

A conservative split-explicit time-integration scheme handles the full range of frequencies admitted by the 
compressible Navier–Stokes equations (Wicker and Skamarock 2002; Klemp et al. 2007). In this scheme a third-order 
explicit Runge–Kutta method is used for time advancement of meteorologically significant low-frequency physical 
modes, although a smaller time step is needed to account for the higher-frequency modes such as acoustic waves. 
Variables from the Navier–Stokes equations and the prognostic equation for potential temperature are split into the value 
from the most recent Runge–Kutta time step t and a perturbation on the acoustic time step τ, so that φ = φt + φτ. 
Horizontally propagating acoustic modes are integrated using an explicit forward–backward scheme, and vertically 
propagating acoustic modes and buoyancy oscillations are treated implicitly.

3. Treatment at the immersed boundary

IBM is used to represent the effects of boundaries on a nonconforming structured grid. Boundary conditions are 
imposed with the addition of a body force term FB in the conservation equations for momentum and scalars [Eq. (4)]. The 
body force term takes a zero value away from the boundaries but it modifies the governing equations in the vicinity of the 
boundary: 

The exact details of this modification have varied among researchers since IBM was introduced by Peskin in 1972. 
Generally, IBM methods include a determination of the forcing term and an interpolation scheme to reconstruct the 
boundary condition at a surface that is not coincident with computational nodes. 

a. Flow reconstruction at the immersed boundary
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The IBM used in this work falls into a category commonly referred to as discrete or direct forcing, which first appeared 
in the work of Mohd-Yusof (1997). With this method, the velocity or scalar value is modified at forcing points near the 
boundary to enforce the boundary condition, eliminating the need for explicit calculation of the body force term in the 
numerical algorithm. The method is especially adept at handling rigid boundaries and produces a sharp representation of 
the fluid–solid interface. Within the direct-forcing class of methods, we have adopted a finite-difference approach, where 
forcing is applied at ghost cells located in the solid domain. This method has several advantages, most notably the 
straightforward extension from two to three dimensions. One drawback of this method is that it is not strictly conservative 
at cut cells. Despite errors in local conservation, successful results using this method have been reported extensively in the 
literature (Mittal and Iaccarino 2005; Ghias et al. 2007).

In the case that the boundary is coincident with computational nodes, the boundary condition can be imposed by 
assigning it at the coincident node. However, when the boundary passes through the grid in an arbitrary manner, the grid 
points are not generally aligned with the boundary. This is always the case with staggered grids, such as the Arakawa-C 
grid used in the WRF model. An interpolation method must be used to determine the forcing needed at actual 
computational nodes. The first step in reconstructing the flow around a boundary is to specify the terrain independently of 
the grid. For implementation into the WRF model, we have allowed specification of terrain height at twice the resolution 
of the horizontal grid. Terrain elevation is specified as a function of x and y, which is compatible with the typical format 
of raw lidar and digital elevation data.

The next step is to identify cells that are cut by the immersed boundary. With a staggered grid, cut cells must be 
determined for each flow variable that will have a boundary condition imposed. Each node located at the cell center and 
on each face of the staggered grid is marked as a solid or fluid node. Cells containing both types of nodes are defined as 
cut cells. Flow variables can be reconstructed at fluid nodes, as in Fadlun et al. (2000), Gilmanov et al. (2003), Balaras 
(2004), and Choi et al. (2007), or at solid nodes, as in Gao et al. (2007), Ghias et al. (2007), and Mittal et al. (2008). In 
this work, flow variables are reconstructed at solid nodes, which is a technique known as the ghost-cell method. Ghost 
points are identified as the layer of nodes belonging to cut cells that are within the solid region of the domain (as shown in 
Fig. 2).

The value of the variable at the ghost cell, which will enforce either a Dirichlet (5a) or Neumann (5b) boundary 
condition at the immersed surface Ω, must be computed: 

Several different interpolation methods have been employed by researchers for the purpose of making this calculation, 
ranging from linear interpolation to inverse distance weighting schemes (Iaccarino and Verzicco 2003). For the pressure-
based compressible flow equations in the WRF model and the associated scalar equations, we have developed a unique 
bilinear reconstruction scheme appropriate for two-dimensional terrain. Three-dimensional terrain is included by 
extending the method to use a trilinear interpolation scheme, as researchers have also done in CFD codes (Mittal et al. 
2008). 

The bilinear interpolation method used in this work is illustrated in Fig. 2. First, the location of the ghost point is 
reflected across the boundary in the surface normal direction, and this is labeled an image point. When a Dirichlet 
boundary condition is used, the ghost-point value is related to the image-point value with φG = 2φΩ − φI. For a Neumann 
boundary condition, the relationship is φG = φI − GI(∂φ/∂n)|Ω, where GI is the distance between the ghost and the image 
points.

The value of the image point is calculated by using interpolation over the shaded region in Fig. 2, where the interpolant 
is 

Four neighboring points are used to define the interpolation region and are chosen as either computational nodes or as 
points on the boundary. For Dirichlet boundary conditions, the neighbors nearest to the image point are chosen. For 
Neumann boundary conditions, the neighbors nearest to the intersection of the surface normal with the boundary are 
chosen. 

Because the boundary may intersect the computational cell in an arbitrary manner, the IBM algorithm must include 
logical directives to choose neighbors for a variety of geometric cases. Examples of the choices made for a Dirichlet 
boundary condition are shown in Fig. 2, but this illustration is not exhaustive. It can be seen in case A that if all four nodes 
surrounding the image point belong to the fluid domain, then these are chosen as the nearest neighbors. In case B, one of 
the surrounding computational nodes lies within the solid domain, so in this case the boundary point in the surface normal 
direction is chosen as a nearest neighbor. If two of the neighboring computational nodes are solid points, then two 
boundary points are chosen (as in case C). In case D, the ghost point is in close proximity to the boundary, and with the 
time variant grid this point can move between the solid and fluid domains. In close proximity cases, flexibility is added to 
the reconstruction scheme so that it is applied at this node, regardless of being in the solid or fluid domain. If the ghost 
node lies in the fluid domain, then it is excluded from being used as a neighbor because solid or ghost nodes are never 
used as neighbors in the interpolation scheme. Additionally, because the WRF grid remains curvilinear as it follows large-
scale terrain features, we found that special care must be exercised in determining the interpolation neighbors by 
accounting for horizontal gradients in the vertical coordinate. This is done by searching for neighbors in each vertical 
column of nodes independently because adjacent nodes will not have identical vertical heights.

The constants c, from the interpolant [Eq. (6)], are determined by solving a system of equations [Eq. (7)] for each ghost 
point, where the rank is equal to the number of neighbors, given as 
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Here, the matrix and the vector φ are dependent on the neighbors chosen for the interpolation and the type of boundary 
condition being imposed. For Dirichlet boundary conditions, Eq. (6) appears in the matrix equation. If the neighbor 
represented by Eq. (6) is a computational node, φ takes the calculated value at the node. If the neighbor is a boundary 
point, then the boundary condition [Eq. (5a)] is assigned to φ. For Neumann boundary conditions, the gradient of the 
interpolation function [Eq. (6)] is substituted into the boundary condition [Eq. (5b)] and Eq. (8) results, so that 

For neighbors on the boundary, this equation is used in Eq. (7) instead. Once the interpolation constants are determined, 
the value of the image point is found with Eq. (6). As a last step, the variable value at the ghost node is calculated and 
assigned. 

The method proposed here is similar to the interpolation schemes used by Tseng and Ferziger (2003) and Mittal et al. 
(2008) but has additional favorable properties. Tseng and Ferziger used a linear interpolation scheme with three 
neighbors. The boundary point and the two nearest computational nodes to the ghost point were used for determining the 
weighting coefficients used in calculating the ghost point value. Large extrapolation coefficients are the result of when the 
nearest neighbors are close to the boundary point and the ghost point is relatively far away. When large gradients exist in 
flow variables, such as in velocity when a no-slip boundary condition is used, large weighing coefficients cause the IBM 
to assign unphysical velocity values to the ghost points, often leading to numerical instabilities. Our method eliminates 
this problem by choosing neighbors that are closest to the image points when a Dirichlet boundary condition is used and 
closest to the boundary point when a Neumann boundary condition is used. This ensures that the flow variable assigned at 
the ghost point has a physical value and that numerical stability is maintained. Mittal et al. (2008) allow neighboring solid 
nodes to be chosen as interpolation neighbors. These solid nodes are ghost nodes, leading to a coupling of the solution. An 
additional iterative procedure is used to deal with the coupling of ghost cell values. Our method avoids this additional step 
by only choosing neighbors in the fluid domain.

b. IBM in the WRF model
1) Initialization. Standard preprocessing routines are used to create domain input data for the IBM–WRF model, creating 
a terrain-following grid based on the large-scale topography. Variables are initialized throughout the entire domain, even 
though some points will be reclassified as solid points during integration. Changes to the WRF model’s preprocessing 
procedure include defining small-scale terrain, which will be resolved with the IBM, separately from the large-scale 
terrain, to which the terrain-following coordinates conform. For cases with atmospheric physics, the land surface 
properties are modified to reflect the new location and properties of the small-scale terrain. 

An additional domain initialization routine exists in the run-time portion of the WRF model executable and is called for 
all domains including the parent domain, newly created nested domains, and moving domains. This initialization routine 
is where the IBM initialization is added and the immersed boundary condition is set for the prognostic variables. For the 
simulations presented in this paper, velocity fields are initialized with a no-slip condition and scalar fields are initialized 
with a zero-flux condition.

During initialization, the IBM procedure begins with the determination of ghost points and ends by assigning values at 
ghost points. The full values (base state plus perturbations) of u, υ, w, θ, and all scalars are used. First, nodes must be 
marked as interior or exterior to the domain. To make this determination, the elevation of each grid cell must be converted 
from geopotential by combining the base and perturbation states and dividing by gravity, z = (ϕ + ϕ′)/g. Geopotential is 
defined on the horizontal faces of a computational cell, coincident with the w velocity. Height is averaged to the locations 
of the other variables, which are located at the cell center and on vertical cell faces. Solid nodes, which are internal to the 
terrain, are set to zero for velocity variables, but the values of temperature, moisture, and passive scalars are not modified 
at these points.

Several variables are not modified at the immersed boundary. Pressure and density are defined by equations of state and 
do not require a boundary condition. The equation for perturbation geopotential [Eq. (1d)] is obtained by rearranging the 
definition of the coordinate velocity η̇. Because the coordinate is allowed to evolve independently of the immersed 
boundary, an immersed boundary condition is not applied.

2) Integration. As noted in section 2, a time-split scheme is used for numerical integration. Velocity and potential 
temperature are advanced on the small acoustic time step, although advection–diffusion equations for moisture and 
passive scalars are integrated exclusively on the large Runge–Kutta time step. IBM routines must be called on both time-
step frequencies to enforce boundary conditions for the separate integrations. Additionally, because the isobaric 
coordinate in the WRF model evolves in time, the IBM procedure of reconstructing the boundary with geometric 
interpolation must be completed for each iteration of the solver. 

During integration, u, υ, w, and θ must be updated during the acoustic time step on which the coupled perturbation 
variables are advanced, (μdu)τ, (μdυ)τ, (μdw)τ, and (μdθ)τ. IBM routines are called after advancement of all variables on the 
acoustic time step. To set the immersed boundary condition, the full uncoupled variable is calculated as φ = [(μdφ)τ+Δτ + 
(μdφ)t]/μd, and the full grid height is calculated as z = (ϕ + ϕ′t + ϕ′τ+Δτ)/g. Full variable values are used at nodes included in 
the interpolation that determines the ghost point value φG. The value of the coupled acoustic perturbation at the ghost 

point is then calculated as , and this coupled value is used at the ghost point to enforce 
the boundary condition. Again, a boundary condition is not set at the immersed boundary for ϕ′τ, and p′τ and  are 
diagnosed from state equations.

Scalar variables are advanced on the large Runge–Kutta time step. Potential temperature and scalars are collocated, so 
if the same type of boundary condition is used for all of these variables, then the grid elevation, ghost point locations, and 
interpolation points from the last acoustic time step are still valid. This information must only be recalculated if the type 
of boundary condition varies. The IBM procedure, as previously explained, is used to set the boundary condition on each 
scalar, which for this work only includes water vapor. Lundquist et al. (2008) performed simulations using the IBM with a 
passive tracer.
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During integration the reconstructed solution is enforced at the first grid point within the solid domain; however, 
several options exist for the treatment of additional interior nodes. When higher-order finite-difference schemes are used, 
solid nodes are included in the stencil of fluid nodes and can affect the accuracy of the derivatives at these nodes. 
Iaccarino and Verzicco (2003) used both a second-order and a high-order upwind finite-difference scheme and found that 
with the direct forcing type of IBM, the treatment of interior nodes has little or no effect on the external flow solution. A 
fourth-order finite-difference scheme is used in von Terzi et al. (2001), along with four different interior treatments. This 
study found that in many cases the interior treatment did not affect the outer-fluid flow; however, when the accuracy of 
near-wall gradients is critical to obtaining the correct flow solution, greater accuracy can be achieved by using a one-sided 
finite difference at the immersed boundary. We implemented various treatment options for solid nodes and tested both 
second-order and higher-order advection schemes, and we concluded that there was little effect for the test cases presented 
in this manuscript. Therefore, we allow prognostic variables to evolve in accordance with the governing equations within 
the solid domain and use the default advection scheme (fifth-order horizontal, third-order vertical). Options for 
eliminating this issue in the future are to reduce the order of the finite-difference scheme at the immersed boundary, apply 
the reconstruction scheme to multiple layers of ghost nodes, or use one-sided differences at the boundary.

4. Boundary conditions

a. Comparison of native and immersed boundary conditions

The native bottom boundary conditions in the σ WRF model set the contravariant coordinate velocity to zero and use a 
kinematic boundary condition for the Cartesian vertical velocity. The set of equations given by Eqs. (9a) and (9b) create a 
free slip bottom boundary condition: 

In Eq. (9b), h is a function specifying the terrain height. Horizontal velocities are extrapolated to the surface using a 
quadratic Lagrange polynomial. The shear stress at the boundary is implicitly set to zero unless the effects of friction are 
taken into account by using log-law similarity theory. Vertical gradients of scalars are zero unless forcing is provided by 
the atmospheric physics parameterizations. 

Our IBM implementation uses a no-slip bottom boundary condition that is commonly used in CFD simulations over 
complex topography, such as urban simulations with explicitly resolved buildings. To enable comparisons between the 
IBM–WRF and the WRF models, we have added a no-slip condition to the WRF model. This boundary condition is also 
useful for high-resolution simulations performed with the WRF solver and enables comparisons between the WRF model 
and other CFD codes that use a no-slip boundary condition. The no-slip implementation is described in the following 
section, and this boundary condition is used for the verification simulations presented in section 6.

Wall models, which approximate surface fluxes of momentum, are commonly used in NWP and have also been applied 
at immersed boundaries. Cristallo and Verzicco (2006) use a two-layer model with the IBM, which reconstructs the 
velocity field at the first fluid point by solving a simplified boundary layer equation. Choi et al. (2007) reconstructs the 
velocity field by fitting the tangent component to a power law. These studies show promising results, and the development 
of a wall model for the IBM–WRF is in progress (Lundquist 2006).

When specifying surface fluxes, our IBM implementation can apply fluxes in either the surface normal or vertical 
direction. It is critical that flux boundary conditions be enforced in the surface normal direction over steep slopes, such as 
vertical building surfaces. The WRF model prescribes vertical fluxes at the surface; therefore, the vertical flux boundary 
condition can be used when simulations with IBM are compared directly to the WRF model, as is done in the idealized 
valley simulation. To further simplify comparisons between the WRF and the IBM–WRF models, we have used a 
constant eddy viscosity. Turbulent viscosity is needed to compute surface fluxes, and variation in this quantity would lead 
to differences in the enforced boundary condition.

b. Implementation of the no-slip boundary condition

As part of this work, a no-slip bottom boundary condition has been added to the WRF model as an additional option 
beyond the standard boundary conditions available in the code. To add the no-slip option, several modifications were 
made to the original WRF boundary conditions, which are given in the previous section as Eq. (9). The first equation [Eq. 
(9a)] is still appropriate because it sets the contravariant velocity of the bottom coordinate to zero. This ensures that the 
bottom coordinate follows the terrain and does not change position in time. The kinematic boundary condition, given by 
Eq. (9b), is no longer valid and is replaced with the requirement that the Cartesian vertical velocity w = 0 on the boundary. 
The need to extrapolate the horizontal velocities to the surface is eliminated and therefore no approximations are made in 
our formulation of the no-slip boundary condition. With these changes, the no-slip boundary condition is satisfied for the 
advective fluxes in the continuity and momentum equations. The use of an Arakawa-C staggered grid (illustrated in Fig. 
3) eliminates the need to explicitly set the u and υ velocities equal to zero on the surface. In the case of the vertical 
derivative in the advective term of the horizontal momentum Eq. (1b), it can be seen that because η̇ and VH are both zero 
at the surface, a one-sided vertical difference is sufficient for calculating this term at the bottom boundary of the domain.

Boundary conditions must be imposed on the diffusive flux terms in the momentum equation in order to achieve a no-
slip condition. The WRF model employs eddy viscosity-type turbulence models so that the turbulent mixing terms take 
the form given by Eq. (10) and the stress tensor is Eq. (11): 
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Diffusive flux terms are calculated in physical space, so that the second term in Eq. (10) arises as the Jacobian of the 
coordinate transformation, where z is the physical height of the coordinate. The variable μ is the column mass per unit 
area, νt is the turbulent eddy viscosity, and Dij is twice the strain rate or deformation tensor and is defined as 

Here, the locations of the components of the deformation and stress tensors are shown in Fig. 3. Diagonal elements of 
each tensor are located at the cell center, and off-diagonal elements are located at vorticity points, which are centered on 
the cell edges. 

The presence of the Jacobian terms complicates the implementation of the no-slip boundary condition by adding partial 
derivatives in the vertical direction to each term. The native WRF model boundary condition (which is free slip) uses a 
quadratic Lagrange polynomial to estimate the u and υ velocity at the surface for the purpose of calculating D11, D22, and 
D12. This step is eliminated for the no-slip boundary condition, and a value of zero is used for u and υ on the surface. In 
the native WRF model boundary condition, D13 and D23 are zero because they are located on the surface. For the no-slip 
boundary condition, the surface values are calculated using a one-sided difference. These new values of the deformation 
tensor are used for calculating the turbulent stresses.

Finally, the equation for the diffusion terms includes additional terms arising from the Jacobian of the coordinate 
transformation, as seen in Eq. (10) previously. With a free-slip boundary condition, τij is zero on the surface. To satisfy the 
no-slip boundary condition, certain elements of τij must now be calculated at various locations on the surface, such as 
below the cell center, below u points, etc. The calculation of these additional surface stress terms is consistent with the 
procedure previously described for evaluating deformation at the surface, and the methods employed are one-sided 
differences, setting velocities to zero at the surface and averaging surface values to intermediate locations.

5. Inclusion of atmospheric parameterizations

Atmospheric parameterizations often provide surface forcing in NWP models. Surface physics interact with the lowest 
model level when terrain-following coordinates are used; therefore, it was necessary to modify these routines to couple 
them to the immersed boundary. The set of schemes that have been coupled to the immersed boundary are the Rapid 
Radiative Transfer Model (RRTM) for longwave radiation, the the fifth-generation Pennsylvania State University
–National Center for Atmospheric Research Mesoscale Model (MM5; Dudhia) model for shortwave radiation, MM5 
surface layer scheme, and the Noah land surface model. Documentation of these schemes can be found in Skamarock et 
al. (2007) and the references within.

a. Radiation models

The radiation schemes currently used in the WRF are column models, where each column is treated independently. The 
terrain is treated as if it were a horizontal plane at each column. To couple this model with the immersed boundary 
method, the vertical integration limits are modified to exclude any portion of the atmosphere below the terrain. 
Additionally, variables such as temperature, pressure, and grid spacing must be modified in the vicinity of the immersed 
boundary by extrapolating these values onto the surface, using data from fluid points above the immersed terrain. The 
modified data for the atmospheric column are then used in the existing radiation routines.

b. Surface physics

The WRF model calculates exchange coefficients of heat, moisture, and momentum using the MM5 surface layer 
model, which is based on Monin–Obukhov similarity theory. Stability regimes are determined by the bulk Richardson 
number [defined by Eq. (17)], where g is the gravitational constant, z is a reference height above the terrain, zsurf is the 
terrain level, θυ is virtual potential temperature, and V is the horizontal wind speed, which has been modified by a vertical 
convection velocity: 

Here, the WRF model chooses the reference height z to be the height of the first computational cell, so that the vertical 
grid spacing defines the offset zo between the reference height and the surface. For the immersed boundary method, the 
reference height must be modified so that it is located above the terrain rather than at the first grid point in the domain. 
With the IBM–WRF model, the offset zo is added to the terrain height zsurf (as shown in Fig. 4). This modified reference 
height is above the immersed boundary; however, unlike in the WRF model case, it does not coincide with a 
computational node. Velocities and temperature, as well as those quantities needed for the conversion to virtual 
temperature, must be interpolated to the modified reference height. Additionally, the surface values must be replaced with 
values on the immersed boundary. The Monin–Obukhov length scale is then calculated based on the stability class. Next, 
the 2- and 10-m reference height data are calculated. Finally, the exchange coefficients are calculated for heat and 
moisture. Again, the values used in these calculations are modified for the immersed boundary, following the example 
given previously for the bulk Richardson number. It is important to note that although scalar fluxes are calculated with 
this approach, surface momentum fluxes are not based on Monin–Obukhov theory when the no-slip boundary condition is 
used because these conditions are incompatible. This is true of both the native WRF and the IBM–WRF model 
computations shown here. 

The WRF model uses the Noah land surface model to provide heat and moisture fluxes at the land surface, using 
radiative and atmospheric forcing from the radiation and surface layer schemes as well as land surface properties to 
determine the fluxes. These fluxes serve as the bottom boundary conditions for potential temperature and water vapor. 
This model also calculates a water budget over four model layers, including physical effects like evapotranspiration and 
runoff. Many of the quantities used by the land surface model have already been modified to include the effects of the 
immersed boundary by the models discussed previously. The Noah model also makes use of similarity theory. As before, 
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the reference height is added to the height of the immersed boundary, and the variables used in the calculation are 
modified accordingly.

6. Verification

a. Witch of Agnesi hill simulations

The performance of the IBM method is examined in this section by considering flow over a two-dimensional hill, 
defined by the Witch of Agnesi curve. This case is often used to verify that topographic forcing is correct at the bottom 
boundary and is chosen here because the terrain slopes are shallow enough so that a direct comparison can be made 
between the WRF and the IBM–WRF models.

The test flow case is the startup flow over a two-dimensional hill. The terrain height ht is defined by the Witch of 
Agnesi curve given in Eq. (14), using a peak height hp and mountain half-width a of 100 m each: 

The flow is initialized with a neutral and quiescent sounding and driven with a constant pressure gradient in the x
direction. The number of grid points used in each direction is (nx, ny, nz) = (120, 2, 172) for a total domain size of (X, Y, Z) 
= (595, 5, 600 m). In the horizontal dimensions, a constant 5-m grid spacing is used. In the vertical direction, the grid is 
not stretched in η; however, the pressure coordinate naturally results in stretching in physical space. The WRF and IBM
–WRF model grids are shown in Fig. 5. At the initialization, the minimum vertical grid spacing in the WRF grid is Δzmin ≈ 
2.85 m and occurs at the peak of the hill, whereas the maximum spacing is Δzmax ≈ 3.52 m at the domain top. In the IBM 
domain, the vertical grid spans the entire 600-m domain height, giving a more uniform (and slightly coarser) grid 
resolution, with Δzmin ≈ 3.42 m and Δzmax ≈ 3.60 m. 

Periodic boundary conditions are used at the lateral boundaries. A no-slip boundary condition is set on velocity at the 
terrain surface, along with a zero-flux condition on temperature. At the top of the domain, the native WRF model 
boundary condition is used (isobaric and a material surface), with a diffusive damping layer 50 m in depth.

The solution is integrated until a steady-state solution is obtained. Figure 6 shows the u velocity at the domain center 
for three different heights for seven days of simulation time. Evolution of the velocity field is nearly identical between the 
WRF and IBM–WRF model solutions, indicating that the rate of convergence toward steady state is not affected by the 
IBM.

Steady-state results are shown for the hill case after seven days (168 h) of simulation time. Figure 7 shows u and w
velocity profiles at several locations across the domain. It can be seen that the IBM solution matches the no-slip WRF 
model solution almost exactly. To compare the results further, the IBM and WRF model solutions are linearly interpolated 
onto a common terrain-following grid. Differences in the simulations are quantified in Table 1, where maximum and 
minimum velocity values for the no-slip WRF solution are presented along with velocity values for the IBM–WRF model 
solution at the same location. Given the different vertical grid spacing in the two simulations, and the presence of errors 
associated with terrain-following coordinates in the σ-WRF model simulation, the excellent agreement is remarkable.

Contours of the same data are shown in Fig. 8, where contours of velocity and the difference between the IBM and the 
WRF model solutions are included. The u velocity increases as it crests the hill, and areas of weak recirculation are 
observed in the troughs. In the IBM solution, a reverse flow develops under the terrain. This flow can be seen in Fig. 7; 
however, in Fig. 8 data below the hill are omitted because the IBM solution is interpolated onto a common terrain-
following grid. The maximum differences present in Fig. 8 are 0.039 and −0.021 m s−1 for the u and w fields, respectively. 
The domain-averaged differences are smaller, with ΔUave = 0.017 and ΔWave = 6 × 10−4 m s−1.

Contours of potential temperature for the IBM solution and differences in the IBM and the WRF solutions are shown in 
Fig. 9. It can be seen that with no surface heating the IBM solution maintains the initialization temperature of 288 K, 
whereas there is a very slight increase in temperature in the WRF model domain. It was found that small errors developed 
in the WRF solution because of the native bottom boundary condition, which uses a Lagrange polynomial to extrapolate 
temperature to the surface.

b. Idealized valley simulations

In the previous section, it was shown that our IBM implementation is able to reproduce results from numerical 
simulations using the native terrain-following coordinate in the WRF model. A no-slip boundary condition was imposed 
on the velocity at the terrain surface, and a zero gradient boundary condition was used for potential temperature. These 
two boundary conditions are adequate for studying a variety of flows and are commonly the only boundary conditions 
available in a traditional CFD code. For realistic atmospheric flows, it is necessary to represent nonzero fluxes at the 
surface, such as those of heat and moisture. Here, we examine nonzero-gradient boundary conditions on the immersed 
boundary in the context of thermally induced slope flows in an idealized valley.

The idealized valley terrain and initialization are similar to those used in the valley winds studies of Rampanelli et al. 
(2004) and Schmidli et al. (2008). The valley terrain is defined by ht = hp × hx, where the peak height is hp = 1.5 km and 
the valley profile hx is given by Eq. (15). In this equation, the valley floor half width is Vx = 0.5 km and the hill half-width 
is Sx = 9 km: 
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(Click the equation graphic to enlarge/reduce size)

Again, the terrain slopes are gentle enough that a direct comparison can be made between the WRF model, using terrain-
following coordinates, and the IBM–WRF model. This case is more challenging for the immersed boundary method 
because the flow is induced by the approximate boundary conditions at the immersed surface itself instead of being 
induced by a large-scale pressure gradient or mean flow. 

The domain is initialized with a quiescent sounding that is moist and stably stratified. The sounding prescribes a 
constant 40% relative humidity and the potential temperature is specified by θ(z) = θs + Γz + Δθ[1 − exp(−βz)], where θs = 
280 K, Γ = 3.2 K km−1, Δθ = 5 K, and β = 0.002 m−1.

For the WRF model simulation with terrain-following coordinates, the total domain size is (X, Y, Z) = (60, 0.6, 10 km), 
where the number of grid points used in each direction is (nx, ny, nz) = (301, 3, 60). When the IBM–WRF model is used, 
the bottom of the domain is lowered to 200 m below the zero level, so that the domain size is (X, Y, Z) = (60, 0.6, 10.2 
km). This allows a minimum of two grid points below the immersed terrain, and the number of grid points becomes (nx, 
ny, nz) = (301, 3, 62). In each simulation, the horizontal grid spacing is ΔX = ΔY = 200 m. For the terrain-following 
coordinate, the minimum vertical grid spacing occurs at the mountain peaks (ΔZmin = 95.6 m) and the maximum at the 
domain top (ΔZmax = 307.8 m). For the IBM–WRF model grid, the minimum vertical grid spacing occurs at the lowest 
grid level, which is below the terrain (ΔZmin = 101.9 m) and the maximum at the domain top (ΔZmax = 307.4 m).

Total integration time for the simulation is 12 h, starting at 0600 UTC and ending at 1800 UTC. A constant eddy 
viscosity of 60 m2 s−1 is used in the turbulent diffusion terms, which is consistent with the typical range of daytime eddy 
diffusivities of 10–100 m2 s−1 (Yasuda 1988). When this eddy diffusivity is used, the mixing is strong enough to maintain 
a neutral stability profile during surface heating, thereby avoiding the formation of thermal convection cells and making 
instantaneous comparisons between simulations possible.

Here, both uncoupled and coupled cases are considered. In the uncoupled cases, the surface heating is specified as a 
function of time and there are no surface or land attributes such as vegetation or soil type. This allows verification of the 
surface flux condition at the immersed boundary without the added complexity of the land surface model. In the coupled 
cases, the surface fluxes are prescribed by atmospheric parameterizations, which have been modified to recognize the 
immersed boundary as the terrain surface. Periodic boundary conditions are used at the lateral boundaries. A diffusive 
damping layer 3.8 km thick is used at the top of the domain, and a no-slip boundary condition is used at the terrain 
surface.

1) Specified surface heating. In this case, the land surface model is turned off and a Neumann boundary condition is 
applied to potential temperature by defining the surface heat flux to be Q(t) = Qmax sin(ωt), where the maximum sensible 
heat flux is Qmax = 200 W m−2 and a period of ω = 2π/24 h is used to represent a daytime heating cycle. 

Figure 10 depicts profiles of u and w velocity at 1200 UTC, which is the time of maximum radiative forcing. A clear 
circulation pattern forms with anabatic winds converging at the mountain peaks and subsidence at the valley center. The 
profiles match very well and show that the boundary condition at the immersed boundary is actually achieved. Figure 11
shows instantaneous profiles of potential temperature at the valley center as it evolves in time. The evolution of the 
profiles for the IBM and WRF model simulations compare well and excellent agreement is achieved in the development 
of the mixed layer.

To further analyze the differences between the IBM–WRF and the WRF model solutions, both time- and domain-
averaged differences are calculated on a common and time-independent terrain-following grid. Once the two solutions are 
on a common grid they may be compared directly, although the error introduced by the interpolation is unknown. Spatial 
variations in the two solutions are calculated for a given variable ϕ with Eq. (16a) and temporal variations are calculated 
with Eq. (16b): 

The results of the time-averaged spatial differences are presented in Figs. 12 and 13. Figure 12 shows time-averaged 
differences in θ, where Δθmax = 0.099 K and Δθmin = −0.023 K. The IBM simulation predicts a higher temperature than the 
WRF model at the surface, with the maximum difference occurring on the valley slopes and a slightly cooler atmosphere 
aloft in the valley center. The higher surface temperature is attributed to differences in the vertical grid spacing. In the 
σ-WRF model case, the average spacing between the first potential temperature node and the surface is Δzave = 51.0 m, 
whereas the spacing is Δzave = 63.5 m for the IBM–WRF model. As the vertical grid spacing increases, a larger 
temperature increment is needed between the surface and the first vertical grid point to maintain the specified flux 
boundary condition. Differences in θ contribute to the differences in velocity shown in the next two figures. Velocity 
differences are ΔUmax = ΔUmin = ±0.254 m s−1 and ΔWmax = 0.133 m s−1 and ΔWmin = −0.068 m s−1. In u, the largest 
differences are seen on the valley slopes, specifically inside of the valley. Additionally, the largest differences in w are 
seen at the valley peaks, where there is a slight offset in the location of the buoyant plumes. These differences are small 
considering that the simulations have different grids and use different methods for specifying boundary conditions.

Differences between the simulations can also be viewed as a function of time (as in Fig. 14). It can be seen here that the 
potential temperature fields are different at initialization. This difference is due to interpolation errors from both 
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interpolating a nonlinear initial sounding profile onto the WRF and IBM–WRF grids and interpolating the solutions onto a 
common grid for comparison. Excellent agreement is seen in the potential temperature field and the differences are on the 
same order of magnitude at the end of the simulation as at initialization. The velocity fields are initialized as quiescent; 
therefore, they are identical at initialization. The differences in velocity rise during the first 30 min of the simulation and 
then rapidly decrease. A stair–step-type appearance in the flow is observed in the first 30 min of the IBM simulation 
because velocities at discrete points adjust to the smooth immersed boundary. As flow patterns develop, the stepped 
appearance quickly smoothes out and disappears. This peak indicates that differences could be reduced by adding spinup 
time to the simulation. It is important to note that the differences do not grow in time and in fact trend downward as the 
simulation time increases (even though the solution is time dependent).

2) Coupled surface heating. In this section, the simulations are fully coupled, which means that the surface fluxes are 
calculated by the radiation and land surface schemes. The domain setup is as described for the cases with specified 
heating; however, in the coupled cases, soil properties are also initialized. The valley is located at 36°N, 0°E. The 
simulation date is 21 March 2007 and the period is again from 0600 to 1800 UTC. The soil is initialized with uniform 
properties with a soil type of sandy loam, vegetation type of savannah, and vegetation fraction of 0.1. The soil temperature 
is initialized at equilibrium with the atmospheric temperature at the surface, and soil moisture is set at a 20% saturation 
rate. Four vertical levels are used in the soil model with depths of 0.1, 0.3, 0.6, and 1 m, for a total depth of 2 m. The 
RRTM is used for longwave radiation and the MM5 (Dudhia) scheme is used to model shortwave radiation. The MM5 
surface layer model is used along with the Noah land surface model. As described in section 5, these schemes have been 
modified so that they are coupled to the immersed boundary. 

Domain-averaged longwave radiation varies slightly between the two simulations (as seen in Fig. 15). The WRF and 
IBM–WRF cases match almost exactly at the first data point (0615 UTC) but diverge slightly during the simulation. At 
the end of the simulation (1800 UTC), the difference in longwave radiation is 1.15 W m−2, or 0.44%. Differences are even 
smaller for shortwave radiation, where nearly perfect results are achieved. The maximum difference between the two 
solutions is 0.50 W m−2 or 0.06% and occurs at 1400 UTC.

The spatial variations in longwave and shortwave radiation are documented in Fig. 16, where they are shown at 1200 
UTC. There is a difference of about 56 W m−2 in longwave radiation from the valley floor to peak. In comparison, at noon 
there is a maximum difference of 1.17 W m−2 in the two simulations. This shows that any error created by coupling the 
radiation scheme to the immersed boundary is negligible in comparison to variations resulting from terrain height. 
Shortwave radiation varies by about 31 W m−2 from valley peak to trough, with a maximum difference of 0.54 W m−2

between the simulations.

Domain-averaged heat and moisture fluxes from the land surface model are plotted in Fig. 17. The peak domain-
averaged heat flux occurs at 1230 UTC. In the IBM–WRF model simulation this peak is 193.80 W m−2, and in the WRF 
model simulation it is 193.31 W m−2. The maximum difference between the two simulations occurs later in the day at 
1430 UTC and is a difference of 1.10 W m−2 or 0.68%. Differences in moisture fluxes are also minimal. The maximum 
mean difference in the simulations occurs at 1230 UTC, and is 5.39 × 10−8 kg m−2 s−1 in magnitude, which is 0.82% of the 
WRF model value.

Figure 18 shows the spatial variation in the heat and moisture fluxes at three different times: 0900, 1200, and 1500 
UTC. At 1200 UTC, spikes in the heat flux are seen near the valley peaks. The cause of this variation is the interpolation 
of variables to a modified reference height for use in the similarity parameters (as described in section 5). The modified 
reference height in the IBM case may lie between the immersed surface and the first grid point above the immersed 
surface or between the first two computational nodes above the surface. This interpolation difference occasionally leads to 
errors in the calculated heat flux in the IBM–WRF model simulations. These spikes in heat flux do not affect the flow in 
this case, and plots of the velocity fields look nearly identical between the uncoupled and coupled cases. This is 
demonstrated in the data given in Table 2, where the values and differences for the IBM and the WRF model simulations 
are given for the prognostic variables in both the uncoupled and coupled cases. The approximately 5% difference in u
velocity is expected because of the differences in grids, application of the boundary conditions, and the added difficulty of 
forcing the flow at the immersed boundary rather than at a larger scale. The largest difference of 9.7% is seen in w when 
the values are small, and a small absolute difference leads to a large relative difference.

The land surface models for soil moisture can be used independently of atmospheric simulations; however, when they 
are coupled, the top boundary conditions of the land surface model are set with inputs from the atmosphere. When the 
IBM is used, it provides boundary conditions to each model (WRF and Noah) simultaneously. A comparison of soil 
moisture is shown in Fig. 19 for the IBM–WRF and WRF simulations. At the initialization, the soil moisture has a 
constant volumetric water content of 0.0868 m3 m−3. During the simulation, the soil begins to dry as moisture is 
transferred to the atmosphere. The depth at which this occurs is affected by the terrain height, and it can be seen that the 
soil remains slightly moister at the terrain peaks than at the valley floor and the terrain outside of the valley. Similar 
results are achieved in both of the simulations.

c. Two-dimensional urban terrain simulations

The IBM allows resolution of urban terrain, enabling the WRF model to simulate flows that cannot be computed using 
a standard terrain-following coordinate. To demonstrate this capability, we have modeled flow over a two-dimensional 
slice of downtown New York City. The tallest building that is included has a height of 248 m. The domain size is (X, Y, Z) 
= (698, 4, 600 m) with Δx = 2 m, Δy = 2 m, and Δz ≈ 2.4 m. The total number of grid points in each direction is (nx, ny, nz) 
= (350, 3, 250). At the initialization, the atmosphere is at rest and the flow is driven by a constant horizontal pressure 
gradient. Boundary conditions are identical to those previously used.

Figure 20 shows flow streamlines and the velocity magnitude at three different snapshots in time. After 30 min of flow 
spinup, recirculation regions form behind several of the buildings. After two hours, there is a large area of recirculation 
between the buildings and the flow velocities are fairly weak in these regions.

This case demonstrates the ability of our IBM algorithm to handle a wide variety of geometric cases while retaining 
numerical stability. Several configurations of ghost points and nearest neighbors that were not present in the idealized hill 
and valley cases are tested in this case. As the isobaric coordinates evolve, it can be challenging to maintain a well-
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conditioned interpolation matrix in Eq. (7); however, this case demonstrates that we have developed a capable and robust 
IBM algorithm.

The focus of this work is the development and accuracy of boundary conditions at the immersed surface; however, for 
complex cases, such as with urban terrain, there are many factors that impact the accuracy of the simulation beyond the 
treatment of the lower boundary. Subfilter-scale turbulence models and near-wall stress models play a large role in 
obtaining accurate solutions of the flow in complex terrain. This is true for all types of grids, regardless of being body or 
nonbody conforming. Some of these additional challenges for high-resolution simulations of complex flows in the WRF 
model have been addressed in the work of Mirocha et al. (2007) and Lundquist et al. (2007), where the use of improved 
turbulence models is investigated.

7. Summary and conclusions

We have developed an immersed boundary method for the WRF model, which is sufficiently flexible to work with the 
time variant isobaric σ coordinate that is native to the WRF and accurately enforces Dirichlet and Neumann boundary 
conditions within the mode-splitting time-integration scheme. A unique interpolation scheme is used for the IBM, which 
avoids problematic numerical instabilities and the need for an iterative procedure to decouple the interior and exterior 
solutions as in previous methods (Tseng and Ferziger 2003; Mittal et al. 2008). The canonical cases of pressure-driven 
flow over a hill and thermally driven flow in a valley were used to validate the implementation of the IBM by comparing 
the results to those achieved with the native WRF model terrain-following coordinate. In the hill case, the domain-
averaged differences between the simulations at steady state were ΔUave = 0.017 and ΔWave = 6e-4 m s−1. In the valley 
case, the domain-averaged differences were ΔUave = 0.010 and ΔWave = 0.002 m s−1 (uncoupled) and ΔUave = 0.011 and 
ΔWave = 0.002 m s−1 (coupled), when averaged over the duration of the daytime diurnal cycle. These errors are remarkably 
small when considering that there were unavoidable differences in the grids and the application of boundary conditions in 
the WRF and IBM–WRF cases. This success was only achieved after careful development of our IBM within the WRF 
computational framework. Considerations were made to accommodate the fully compressible Navier–Stokes equations, 
the transformation of these equations into time-variant pressure-based σ coordinates, and the discretization of the 
equations with a time-split integration scheme. A simulation of flow over urban terrain demonstrated the ability of the 
IBM–WRF to handle highly complex terrain, which could not be simulated using σ coordinates.

Our IBM–WRF model implementation is capable of handling highly complex terrain while maintaining atmospheric 
parameterizations included in the WRF mesoscale model. We coupled a set of surface parameterizations to the immersed 
boundary, providing realistic land surface forcing. These parameterizations may be appropriate for some scales where 
IBM is used, such as in mountainous terrain, but may need to be modified in urban terrain (where traditional similarity 
theory may not be applicable). Regardless, the capability exists to couple the IBM–WRF model to surface 
parameterizations when they are available. This means that the IBM–WRF can be used in a grid-nesting configuration to 
accommodate synoptic-scale lateral boundary conditions in an urban environment, with grid resolution fine enough to 
explicitly resolve flow around buildings. We can therefore combine the best properties of CFD (capable of resolving 
buildings) and mesoscale codes (capable of handling atmospheric physics and boundary conditions). A standard terrain-
following WRF model simulation can be used at mesoscales, with a seamless transition to the IBM–WRF model at finer 
scales. Furthermore, IBM eliminates grid distortion, which is present high above the land surface when using σ
coordinates over steep terrain.

The drawbacks to this approach are that it can be expensive to maintain fine near-surface grid resolution of the 
immersed boundary at elevated heights, such as at mountain peaks. The hybrid σ and IBM coordinate may reduce this 
constraint by allowing gentle slopes in topography to be represented with σ coordinates, whereas steep slopes are 
represented with the IBM. This could allow for increased resolution near the ground while minimizing the number of 
nodes below the terrain. There are increased computational costs associated with the IBM algorithm; however, the IBM 
allows simulations of flow over terrain that could not otherwise be handled by the WRF model. Opportunities exist for 
optimization as the code is developed further.

The ability to seamlessly integrate IBM simulations within a mesoscale model with full atmospheric physics is a 
significant milestone in the progress of atmospheric boundary layer simulations. The development of the IBM–WRF 
model enables a range of applications, including building-resolving simulations of urban dispersion for emergency 
response efforts or even urban air quality modeling. Similarly, simulations of flow in highly complex mountainous terrain 
with near-vertical slopes can now be accommodated without compromising the accuracy or stability of the solution. The 
extension to three dimensions has been relatively straightforward in our preliminary tests and simply requires a larger 
interpolation stencil for the IBM algorithm. Incorporation of similarity theory for surface momentum fluxes is also in 
progress (Lundquist 2006) and will allow even more realistic application to atmospheric boundary layer flows.
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FIG. 1.
Nested domains can be used to resolve both coarse and finescale terrain. Terrain-
following coordinates conform to the gently sloping valley, whereas finescale terrain (in 
this case urban features) is resolved with the immersed boundary method.
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version (22K)

FIG. 2.
The four examples of the interpolation scheme used to reconstruct the immersed 
boundary. Ghost nodes are marked with open circles and image points with open squares. 
The normal vector to the immersed surface connects the ghost and image points. Interior 
nodes are indicated with a filled circle and the neighbors used in the interpolation scheme 
are marked with a filled square. The interpolation region is shaded.
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version (20K)

FIG. 3.
The Arakawa-C staggered grid used in WRF.

FIG. 4.
Examples of the modified reference height z used at the immersed boundary. Ghost nodes 
are marked with open circles (○) and modified reference heights with open squares (□).
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FIG. 5.
(top) The WRF grid with terrain-following coordinates is shown in contrast with the (bottom) IBM
–WRF grid. Terrain-following coordinates map to the bottom boundary; with IBM the coordinates 
remain flat. Every fifth grid line is shown.
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FIG. 6.
(left) The u velocity component is plotted at the domain center for three different heights 
indicated by stars. The first point is 10 m above the terrain peak hp, the second is 200 m, 
and the third is 400 m. (right) The IBM–WRF is plotted with a black line,  whereas 
WRF is shown in gray . Markers are placed at 12-h intervals. The WRF and IBM
–WRF solutions are virtually indistinguishable.
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FIG. 7.
Profiles of (a) u and (b) w velocity (m s−1) for steady-state flow over a hill at 168 h.
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FIG. 8.
(left) Contours of (top) u and (bottom) w velocity for the IBM–WRF for steady-state flow 
over a hill at 168 h. Contour intervals are 1 m s−1 for u and 0.02 m s−1 for w. (right) 
Contours of the difference between the IBM–WRF and the WRF solution are shown for 
(top) u and (bottom) w, with intervals of 0.005 and 0.004 m s−1, respectively.
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version (57K)

FIG. 9.
(left) Contours of potential temperature (K) for the IBM–WRF. (right) The difference in 
the IBM and the WRF solutions.
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FIG. 10.
Profiles of (top) u and (bottom) w velocity (m s−1) for the IBM–WRF and WRF, with 
terrain-following coordinates at 1200 UTC.
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version (35K)

FIG. 11.
Profiles of potential temperature (K) at the valley center for 0600, 0900, 1200, 1500, and 
1800 UTC. The IBM–WRF is shown as a black line  and the WRF with terrain-
following coordinates is shown in gray . Markers are placed at every fourth data point. 
The WRF and IBM–WRF solutions are virtually indistinguishable.
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FIG. 12.
Time-averaged differences (K) between the IBM–WRF and WRF for potential 
temperature. Differences are absolute.
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FIG. 13.
Time-averaged differences between the IBM–WRF and the WRF for (top) u and (bottom) 
w velocity (m s−1). Differences are absolute. Contour intervals of 0.05 and 0.02 m s−1 are 
used for u and w, respectively, with the zero contour suppressed.
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FIG. 14.
Domain-averaged differences of θ, u, and w as a function of time.
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FIG. 15.
Domain-averaged (top) downward longwave and (bottom) shortwave radiation for the 
coupled simulations. Markers are placed at 15-min intervals.

FIG. 16.
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Instantaneous spatial variation in (top) downward longwave and (bottom) shortwave radiation 
at 1200 UTC.
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FIG. 17.
Domain-averaged upward (top) heat and (bottom) moisture flux for the coupled simulations. 
Markers are placed at 15 min intervals.
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FIG. 18.
Spatial variation in (top) upward heat and (bottom) moisture flux at 0900, 1200, and 1500 
UTC.
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FIG. 19.
(top) Volumetric soil moisture (m3 m−3) at the end of the IBM–WRF simulation (1800 UTC). 
This field was initialized with a constant saturation rate. (bottom) The absolute difference 
between the IBM and the WRF simulations for volumetric soil moisture.
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FIG. 20.
Velocity contours (m s−1) and streamlines of startup flow over 2D building data from New York 
City using the IBM–WRF. Three different times are shown: (top) 30 min, (middle) 2 h, and 
(bottom) 10 h.
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TABLE 1.
Location of minimum and maximum velocities for steady-state flow over a hill in the 
σ-WRF simulation and the velocity values at this location for both the IBM–WRF and the 
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σ WRF. Differences between the IBM and WRF solutions are given as both absolute and 
relative values.
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version (23K)

TABLE 2.
The maximum and minimum values of prognostic variables for the uncoupled and 
coupled idealized valley cases at noon. Differences are instantaneous and calculated at 
the location of the indicated maximum or minimum value. Here, the units are for velocity 
(m s−1), potential temperature (K), and the water vapor mixing ratio (kg kg−1).
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