
 

Event Reconstruction with 
the Urban Dispersion Model 
 

Stephanie Neuman, Lee Glascoe,  
Branko Kosovic, Kathy Dyer, William Hanley, 
John Nitao and Robert Gordon 

American Meteorological Society, Atlanta, GA, January 29, 
2006 through February 2, 2006 

 

 

UCRL-PROC-216842 



 DISCLAIMER
 
 This document was prepared as an account of work sponsored by an agency of the United States
Government.  Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California.  The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.
 
 This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it will not be cited or
reproduced without the permission of the author.
 
 

 This report has been reproduced
 directly from the best available copy.

 
 Available to DOE and DOE contractors from the

 Office of Scientific and Technical Information
 P.O. Box 62, Oak Ridge, TN  37831

 Prices available from (423) 576-8401
 http://apollo.osti.gov/bridge/

 
 Available to the public from the

 National Technical Information Service
 U.S. Department of Commerce

 5285 Port Royal Rd.,
 Springfield, VA  22161

 http://www.ntis.gov/
 

 OR
 

 Lawrence Livermore National Laboratory
 Technical Information Department’s Digital Library

 http://www.llnl.gov/tid/Library.html
 

 



XX.X EVENT RECONSTRUCTION WITH THE URBAN DISPERSION MODEL

Stephanie Neuman, Lee Glascoe∗, Branko Kosović, Kathy Dyer, William Hanley, John Nitao,
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Abstract
The rapid identification of contaminant plume sources in
urban environments can greatly enhance emergency re-
sponse efforts. Source identification based on downwind
concentration measurements is complicated by the pres-
ence of building obstacles that can cause flow diversion
and entrainment. While high-resolution CFD simulations
are available for predicting plume evolution in complex ur-
ban geometries, such simulations require large computa-
tional effort. We make use of an urban puff model, the De-
fence Science Technology Laboratory’s (Dstl) Urban Dis-
persion Model (UDM), which employs empirically based
puff splitting techniques. UDM greatly reduces urban
dispersion simulations by combining traditional Gaussian
puff modeling with empirically deduced mixing and en-
trainment approximations. Here we demonstrate the pre-
liminary reconstruction of an atmospheric release event
using stochastic sampling algorithms and Bayesian infer-
ence together with the rapid UDM urban puff model based
on point measurements of concentration. We consider
source inversions for both a prototype isolated building (a
cube) and for observations and flow conditions taken dur-
ing the Joint URBAN 2003 field campaign at Oklahoma
City.

The Markov Chain Monte Carlo (MCMC) stochastic
sampling method is used to determine likely source term
parameters and considers both measurement and for-
ward model errors. It should be noted that the stochastic
methodology is general and can be used for time-varying
release rates and flow conditions as well as nonlinear dis-
persion problems. The results of inversion indicate the
probability of a source being at a particular location with
a particular release rate. Uncertainty in observed data, or
lack of sufficient data, is inherently reflected in the shape
and size of the probability distribution of source term pa-
rameters. Although developed and used independently,
source inversion with both UDM and a finite-element CFD
code can be complementary in determining proper emer-
gency response to an urban release. Ideally, the urban
puff model is used to approximate the source location
and strength. The more accurate CFD model can then
be used to refine the solution.

1 Introduction and Background
In the event of an atmospheric release, effective conse-
quence management depends on how much is known
about the release event and how quickly the problem can
be analyzed to a high degree of certainty. Accurate quan-
tification of specific details of a release can greatly as-

∗Corresponding author address: NARAC/IMAAC, L-
103, Lawrence Livermore National Laboratory, Liver-
more, CA 94551 email: glascoe1@llnl.gov

sist relief efforts and subsequent forensic analysis. Such
quantification, rarely a straightforward task, becomes es-
pecially complicated when the release occurs in the pres-
ence of building obstacles that can cause flow and dis-
persion complications. Toward the end of rapid anal-
ysis of atmospheric releases, the ’event reconstruction’
(ER) methodology was developed to provide answers to
the questions surrounding a release event: what was re-
leased, how much, when and where it occurred. The
ER approach developed at Lawrence Livermore National
Laboratory is a Bayesian inference methodology combin-
ing observed data with forward predictive models to deter-
mine unknown source characteristics. This approach can
leverage from a large computational framework that sup-
ports multiple stochastic algorithms, forward models, and
runs on a wide range of computational platforms. To an-
alyze urban dispersion rapidly,the ER methodology was
linked to the rapid urban puff splitting model, the Urban
Dispersion Model (UDM), developed by Defence Science
Technologies Limited (Dstl), a United Kingdom Ministry of
Defence Lab located in Porton Down. For this study, the
stochastic tool used in the Bayesian inference scheme is
a Markov Chain Monte Carlo (MCMC) algorithm. All UDM
and ER runs were processed for this effort using a single
Windows personal computer.

The Urban Dispersion Model (UDM) is an empirical
puff model that estimates atmospheric dispersion in an
urban environment by differentiating three different puff
splitting regimes (open, urban, and long-range) based on
empirical evidence. Different empirically based disper-
sion modeling procedures are applied for each regime in
such a way to account for the effect of single building,
building clusters, or an entire urban environment on the
dispersion of Gaussian puffs [3].

In the open regime, the overall proportion of the sur-
face covered by obstacles is less than five percent. The
puffs arising in this regime travel across a largely open
terrain over which single obstacles or groups of obstacles
are arbitrarily distributed. Interaction with these obstacles
changes the size and rate of travel of the puff. If the obsta-
cle is of sufficient size in comparison the puff, the puff will
split: a portion of the material will become entrained in the
wake of the building while the remainder proceeds largely
unaffected. The fraction of the puff that is entrained will
spread uniformly across the entrainment region and be
delayed by a characteristic wake residence time. After
interaction with the obstacle, puff spreading of both the
unentrained puff and the entrained puff is increased due
to turbulence in the recovery region. The model cannot
account for complex obstacle shapes, strong trailing vor-
ticity or horseshoe vortices generated by obstacles.

In the urban regime, the plan area density of the ob-
stacles is greater than 5 percent. The single obstacle in-
teractions utilized in the open regime are no longer valid
due to interference with multiple entrainment regions from
densely distributed obstacles. Puffs quickly become large
enough to encompass obstacles resulting in a lateral dis-



persion that is effectively higher than the value given by
traditional puff models due to puff interaction with surface
obstacles. Atmospheric stratification is assumed neutral
in this regime for UDM 2.2 (a reasonable assumption as
mechanically generated turbulence in the urban environ-
ment is likely to dominate dispersion near the ground).
The long-range regime the puff is large compared to any
surface obstacles, and puffs are treated with conventional
Gaussian dispersion modeling techniques.

The UDM was implemented into the existing ER frame-
work to provide rapid results that takes urban obstacles
into consideration complementing similar efforts employ-
ing a computational fluid dynamics (CFD) model [2]. The
UDM is computationally expedient enough to run on a
single processor. A typical forward simulation requires
less than a minute to complete for the most complicated
case, while a similar CFD run requires on the order of 100
CPU hours. Other advantages of using the UDM for rapid
analysis is its relative ease-of-use with easily customized
buildings, source strength and location, and sensors lo-
cations within a single input file. Disadvantages to us-
ing a simple empirical model to do event reconstruction
include the fact that empirically based entrainment and
detrainment methods in the model create inversion diffi-
culties due to discontinuities. The simple wind field and
puff splitting techniques which allow for rapid dispersion
calculations tends to lead to reduced accuracy in compar-
ison to CFD modeling. As an example of lost detail, UDM
has no channeling effects between buildings. The Ok-
lahoma City example will demonstrate the error that this
can cause in the final probability distribution. In field ex-
periments in urban environments, channeling along side
streets is observed. When comparing the model output to
these experimental data in the event reconstruction, the
resulting probable source locations are such that build-
ing entrainment and detrainment provide some compen-
sation for the lack of channeling effects.

Two example ER scenarios were conducted using
UDM. The first scenario is a simple flow around a cubic
building; the second scenario is a release in downtown
Oklahoma City for observations and flow conditions dur-
ing the Joint URBAN 2003 field campaign [1]. In both sim-
ulations, the event reconstruction code simultaneously
samples both source location and source strength. In
UDM, source strength is represented by total mass re-
leased, and results of probable source strength are pre-
sented in this way.

2 Reconstruction Methodology
The ER framework for this study performs stochastic in-
version using Markov Chain Monte Carlo (MCMC) tech-
niques [4]. The procedure is as follows: 1. samples
values for source location and source strength are esti-
mated from a defined prior distribution or proposal distri-
bution of source term parameters; 2. the forward model
(UDM) is run with these input values; 3. the output sen-
sor data from the forward model (UDM) is compared to
the observed data using Bayesian inference based on
Bayes theorem relating conditional probabilities of source
term parameters given data to comparison; 4. the sam-
pled source term configuration is either accepted or re-
jected following a Metropolis-Hastings algorithm; 5a. if
accepted, the likelihood function is updated and the val-

ues used in the next iteration are selected based on the
accepted value; 5b. if rejected, the next point is se-
lected based on the last accepted value; 6. the process
is repeated for a large number of MCMC iterations un-
til the convergence to a posterior probability distribution
of source term parameters (represnting the solution to
the inverse problem) is achieved. Effective reconstruction
using Bayesian inference via stochastic sampling imple-
mented in Retrodict requires model and data error quan-
tification. A single Gaussian distribution characterized by
a single input parameter (a standard deviation) is used to
represent both uncertainty in the sensor measurements
and uncertainty in the forward model. The higher the in-
put value of error, the broader the resulting probability dis-
tribution will be.

3 Isolated Building Example

The first test of integrating UDM into the Retrodict event
reconstruction code was a simple cubic building, 10m to a
side; a follow-on study to the ’Isolated Building Example’
of [2]. Figure 1 shows a simulation using the UDM. The
entrainment region is clearly visible in the figure. Also, the
intentional slight asymmetry of the source location can be
seen in the resulting plume. The event reconstruction was
calculated by comparison with synthetic data generated
by UDM for the actual source location.

The resulting Markov chains for the source inversion
calculation are shown in Figure 2. The asterisks mark
the initial location of each of the four chains. The dia-
monds represent the four sensors, and the actual source
is shown as a square. After some exploration of the do-
main space, the chains quickly converge to the area im-
mediately surrounding the actual source location. Note
that two of the Markov chains explored the entrainment
region. This result reflects that puffs arising in a building
entrainment region are automatically fully entrained and
that the detrainment process simulates a source. How-
ever, the resulting probability distribution, Figure [], shows
that the number of samples that the Markov chains sam-
pled from the entrainment region is very small compared
to the number of samples sampled in the vicinity of the ac-
tual source location. Figure 3 shows the peak of the prob-
ability distribution to be very close to the actual source
location.

In addition to the source location, release strength was
also stochastically sampled during this simulation. The
resulting release strengths are displayed in a histogram
in Figure 4. The distribution of total mass has a sin-
gle, significant peak in very good agreement with the ac-
tual value, shown as a solid vertical line. When model
predictions are compared to synthetic data, as in this
example, the source inversion calculation is very accu-
rate. The error is specified as an input, and if the er-
ror is small enough, the actual source can be predicted
perfectly. However, to conduct real source inversion for
actual events, the model must be able to predict source
characteristics using real data. Due to random and sys-
tematic differences between sensor measurements and
model predictions, we expect that event reconstruction
will be less accurate in this case.
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Figure 1: Horizontal concentration contours at the
first vertical level generated by forward simulation
with UDM for flow around an isolated cubic build-
ing. Four sensors are placed in the lee of the build-
ing (diamonds). The source is indicated by the ma-
genta square.

Figure 2: Paths of four Markov chains for flow
around an isolated cubic building.

Figure 3: Probability distribution of source location
for flow around an isolated cubic building. Magenta
square indicates actual release location.

Figure 4: Histogram of source strengths for flow
around an isolated cubic building. Vertical blue line
indicates actual release rate.
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4 Oklahoma City - Joint URBAN
2003 IOP3 Example

Given a highly complex domain, with buildings of various
shapes and sizes, and concentration measurements at a
few locations, of great interest is if it is indeed possible to
locate a contaminant source using a fast Gaussian puff
model (Figure 5). There was interest in applying UDM to
Oklahoma City in order to compare the model output to
observations from the Joint URBAN 2003 field campaign.
A standard shape file of downtown Oklahoma City was
used to construct the buildings. Actual source and sen-
sor locations were used to recreate the field experiment.
Two event reconstruction calculations with differing wind-
direcion were conducted using concentration measure-
ments from the Intensive Observational Period 3 (IOP3)
from the Joint Urban 2003 tracer field experiment in Ok-
lahoma City. In the first complete run, wind input was
directly from the south, 180 degrees. A UDM 3D puff
simulation and the downtown of Oklahoma City is illus-
trated in Figure 6. During our simulations, one building,
the convention center, was found to play a key role. The
convention center is the very large building in the South-
east corner of the domain. The entrainment region of this
building will be shown to adjust for some deficiencies of
the forward model, specifically the lack of channeling ef-
fects. The relevant input properties for the Oklahoma City
simulations are displayed in Table [] below.

The first successfully completed urban source inver-
sion calculation with UDM was Oklahoma City with winds
directly from the south. Puffs and 2D contours of ground-
level concentration are displayed in Figures 6 and 7, re-
spectively. Wind speed was 6.5m/s at 50m above ground.
The number of iterations is 1700 and each of those itera-
tions involved four Markov chains. The complete calcula-
tion took less than 33 hours on a single 857 MHz proces-
sor with 768 MB of RAM. When a more modern, faster
computer is used, the total run time is cut down to around
8 hours on a single machine. If each Markov chain is
calculated on a different processor and eight chains are
used, the entire calculation, in this case, can be com-
pleted in an hour. As an emergency response tool, event
reconstruction with UDM is more favorable than a CFD
equivalent because of how rapidly a complete calculation
can be completed.

The resulting Markov chains are illustrated in Figure 8.
Note how the chains quickly converge to the west side
of the Convention Center. While there is good mixing
by three of the chains, one chain becomes stuck in a lo-
cal minimum, and remains at the northwest corner of the
building. The resulting probability distribution is shown
in Figure 9. There are three distinct peaks visible in the
distribution. One peak is within 20m of the actual source
location, which is shown as a triangle. Another peak is
towards the bottom of the domain, and the third is on
the west wall of the convention center, part way between
the other two. Three peaks are also noted in the release
strength histogram, Figure 10. One peak is a very low
value of release mass. The second, smallest, peak cor-
responds with the actual release mass, shown as a solid
vertical line. The final peak is a higher value, between 8
kg and 9 kg of total mass released during the simulation.

In order to determine the probable locations that corre-
sponded to each of the three most likely release rates,
conditional probability for each was computed. Figure

11 illustrates the conditional probability of source location
depending on release mass (low, mid and high). The low
peak, less than 1 kg, corresponded to the location very
near the actual source location, at the Northwest corner
of the convention center. This result corresponds to the
Markov chain that became stuck in the local minimum.
The resulting probabilities for both location and strength
are about 25%, indicating that one of the four chains
spent all of its time in that location without being able to
further explore the domain. This is confirmed by exam-
ining the details of the Markov chains: one chain spends
the simulation in that location. The release strength is low
because of the close proximity to the sensors. The con-
ditional probability corresponding to the actual mass, 3.1
kg < q < 4.1 kg, peaks toward the bottom of the domain,
almost 200m south of the actual source location. When
the source material is released in the model from the ac-
tual source location, the puffs are too narrow to hit the
sensors above the convention center. When the source
is located at the peak of the middle plot of Figure 11, the
increased distance to the sensors and the interaction with
the convention center sufficiently enlarge the puff to bet-
ter agree with the actual concentrations. The conditional
probability corresponding to the highest release strength,
8.25kg <q < 9.25kg, is shown in far-right plot of Figure
11. Due to its proximity to the building, material released
from this point is automatically entrained in the building’s
wake. Here, the entrainment region acts as a source, re-
leasing material from the entrainment region over time.
The entrainment creates a large, diffuse puff in the wake
of the building, resulting in predicted source strengths for
this location that are higher than the actual value.

5 Discussion and Conclusions
Event reconstruction calculations using the Urban Dis-
persion Model, UDM, can be performed very rapidly to
provide a valid initial approximation for source location
and release strength even in a complex urban environ-
ment. Ideally, results obtained from reconstruction with
UDM can be used to significantly decrease the sampling
domain needed to perform more accurate CFD calcula-
tions. That is, using independent data, posterior distribu-
tion obtained using event reconstruction with UDM can be
used as a prior distribution for event reconstruction with
a CFD code. With a smaller domain, those subsequent
calculations can be conducted much more expediently.

When conducting a source inversion calculation using
the UDM as a forward model, it is important to have all
Markov chains exploring the domain space in order to
predict accurate source probability distributions. In order
to obtain sufficient mixing, input parameters such as step
size in x and y, step size in q, and quantified error should
be specified carefully with attention to appropriate values
relevant to the scale of the problem. Determining the cor-
rect input values for these parameters can take some trial
and error. As illustrated in the Oklahoma City example,
Run 1, a chain that does not explore the domain space
can cause error in the final results. Another source of er-
ror in the final probability distributions for complicated city
examples is the lack of channeling effects in the forward
model UDM. The wind field applied by UDM is very sim-
plified and cannot reproduce complex urban flows beyond
building entrainment. Channeling effects are somewhat
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Figure 5: Given a highly complex domain, with
buildings of various shapes and sizes, and concen-
tration measurements at a few locations, is it possi-
ble to find the source of a contaminant plume with a
fast Gaussian puff model?

Figure 6: Three-dimensional puffs generated by for-
ward simulation with UDM for flow in and around the
downtown business district of Oklahoma City. Note
how the puff expand and entrain behind the larger
buildings.

Figure 7: Horizontal concentration contours at the
first vertical level generated by forward simulation
with UDM for flow in and around the downtown busi-
ness district of Oklahoma City.

Figure 8: Paths of four Markov chains for flow in and
around the downtown business district of Oklahoma
City.
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Figure 9: Probability distribution of source location
for flow in and around the downtown business dis-
trict of Oklahoma City. Magenta square indicates
actual release location.

Figure 10: Histogram of source strengths, q, and
the conditional probabilities for flow in and around
the downtown business district of Oklahoma City.
Vertical blue line indicates actual release rate. Note
the rapid convergence of x and y location, and
slower conversion of strength q.

Figure 11: Conditional probability distribution of
source location for flow in and around the downtown
business district of Oklahoma City. Magenta square
indicates actual release location.

Figure 12: The building wake entrainment acts as
a flow channeling effect within the UDM. Horizontal
concentration contours at the first vertical level gen-
erated by forward simulation with UDM for flow in
and around the downtown business district of Ok-
lahoma City for the location associated with actual
source strength.
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compensated for by building entrainment effects, but the
results of the reconstruction consequently may not reflect
the actual source location.

The next step in this research should be to test UDM
with a larger domain space and with more sensor data.
Sensor data for the Oklahoma City example exists up to
4 km from the source. Using this data, more simulations
could be conducted. Perhaps with an extended domain,
the lack of channeling that produced error in the short
range will have less impact on the results. Also, stochas-
tic sampling of wind direction as well as source location
and strength may give better results.
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