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Abstract

Accidental or terrorist releases of hazardous materials into the atmosphere can
impact large populations and cause significant loss of life or property damage.
Plume predictions have been shown to be extremely valuable in guiding an effec-
tive and timely response. The two greatest sources of uncertainty in the prediction
of the consequences of hazardous atmospheric releases result from poorly char-
acterized source terms and lack of knowledge about the state of the atmosphere
as reflected in the available meteorological data. In this report, we discuss the
development of a new event reconstruction methodology that provides probabilis-
tic source term estimates from field measurement data for both accidental and
clandestine releases.

Accurate plume dispersion prediction requires the following questions to be
answered: What was released? When was it released? How much material was re-
leased? Where was it released? We have developed a dynamic data-driven event re-
construction capability which couples data and predictive models through Bayesian
inference to obtain a solution to this inverse problem. The solution consists of a
probability distribution of unknown source term parameters. For consequence as-
sessment, we then use this probability distribution to construct a ”composite”
forward plume prediction which accounts for the uncertainties in the source term.
Since in most cases of practical significance it is impossible to find a closed form
solution, Bayesian inference is accomplished by utilizing stochastic sampling meth-
ods. This approach takes into consideration both measurement and forward model
errors and thus incorporates all the sources of uncertainty in the solution to the
inverse problem. Stochastic sampling methods have the additional advantage of
being suitable for problems characterized by a non-Gaussian distribution of source
term parameters and for cases in which the underlying dynamical system is non-
linear.

We initially developed a Markov Chain Monte Carlo (MCMC) stochastic method-
ology and demonstrated its effectiveness by reconstructing a wide range of release
scenarios, using synthetic as well as real-world data. Data for evaluation of our
event reconstruction capability were drawn from the short-range Prairie Grass,
Copenhagen, and Joint Urban 2003 field experiments and a continental-scale real-
world accidental release in Algeciras, Spain. The method was tested using a vari-
ety of forward models, including a Gaussian puff dispersion model INPUFF, the
regional-to-continental scale Lagrangian dispersion model LODI (the work-horse
real-time operational dispersion model used by the National Atmospheric Release
Advisory Center), the empirical urban model UDM, and the building-scale com-
putational computational fluid dynamics code FEM3MP. The robustness of the
Bayesian methodology was demonstrated via the use of subsets of the available
concentration data and by introducing error into some of the measurements. These
tests showed that the Bayesian approach is capable of providing reliable estimates
of source characteristics even in cases of limited or significantly corrupted data.

For more effective treatment of strongly time-dependent problems, we developed
a Sequential Monte Carlo (SMC) approach. To achieve the best performance under
a wide range of conditions we combined SMC and MCMC sampling into a hybrid
methodology. We compared the effectiveness and advantages of this approach
relative to MCMC using a set of synthetic data examples.

Our dynamic data-driven event reconstruction capability seamlessly integrates
observational data streams with predictive models, in order to provide the best
possible estimates of unknown source term parameters, as well as optimal and
timely situation analyses consistent with both models and data.



This new methodology is shown to be both flexible and robust, adaptable for
use with any atmospheric dispersion model, and suitable for use in operational
emergency response applications.
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1 Introduction

Accidental or terrorist atmospheric releases of hazardous material pose great risks to
human health and the environment. Examples range from the continental-scale Cher-
nobyl nuclear power plant accident in 1985 to the recent anthrax attacks in the United
States, as well as relatively common toxic industrial chemical plant and transportation
accidents. In the event of an atmospheric release of radioactive, chemical, or biological
materials, emergency responders need timely transport-and-fate predictions, which pre-
dict the current and future locations and concentrations of material in the atmosphere
and deposited on the ground. Such predictions help responders to make time-critical
decisions regarding precautions for their own safety, plans for evacuation or shelter-in-
place, the design of efficient field measurement sampling plans, treatment of affected
populations, attribution, and decontamination of the affected area.

Accurate dispersion calculations require proper characterization of the release source
term (e.g., the location, time, type, and quantity of material released) and knowledge of
the relevant meteorological parameters representing the state of the atmosphere derived
from observations and/or numerical weather prediction model results. In this report, we
discuss the development and application of a new event reconstruction method that cou-
ples field measurements with dispersion model predictions in order to solve the inverse
problem, estimate unknown source term parameters, and reduce plume prediction un-
certainties. Our goal is the creation of an efficient, robust and reliable approach, which
is applicable to a wide range of possible release scenarios and models and is suitable for
operational use in emergency response.

In real-world events, the first indication that a release has occurred may come from
sensors, visual observations, or even casualties. To accurately predict the resulting im-
pacts, we first need to reconstruct the event by answering the following critical questions:
What was released? How much material was released? When and where was it released?
Inaccurate estimation of the source term can lead to gross errors and/or time delays dur-
ing a crisis, with an associated loss of lives. Current emergency response methods rely
on first responders or analysts to estimate source characteristics. As measurement data
become available, modelers conduct trial-and-error simulations in order to match model
output and data in order to improve plume prediction results.

An example of such a manual event reconstruction was performed for the Algeciras
Cesium-137 release by operational staff at the National Atmospheric Release Advisory
Center (NARAC). During 1998 May-June, elevated radiation readings of more than
1000 times background were reported in Switzerland, France, and Italy. The time reso-
lution of this data were very poor, with many of the sensors reporting only one-to-two
week integrated quantities. NARAC expert operations staff performed repeated manual
simulations over several days in order to localize the possible release site to an area en-
compassing southern Spain and a nearby area in northern Africa. At approximately the
same time, traces of Cesium-137 were discovered in the smoke stack filters of a Spanish
steel mill at Algeciras, Spain just north of the straits of Gibraltar. Using this location,
NARAC analysts then spent several additional days to manually estimate the time and
quantity of the release via repeated model simulations and comparisons to data. The
NARAC source estimate was later found to agree with the final Spanish estimates of
an 8-80 Curie release from a medical source accidentally melted during a six-hour time
window (Vogt et al., 1999).

Although successful, the Algeciras event reconstruction was difficult, time-consuming,
labor intensive, and heavily dependent on expert analyst judgment. For complex events,
manual and other traditional approaches (e.g., regression, inversion, optimization) have
serious limitations. Typically these methods yield only a single “best” solution and pro-
vide no information on the full possible range of solutions and uncertainties. They are
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difficult to solve for applications involving large non-linear systems and often function
poorly for sparse, high-volume, or high-frequency data streams and problems requiring
the integration of disparate data types.

The coupling of Bayesian inference with stochastic sampling methodologies provides
a powerful alternative approach. Bayesian methods reformulate the inverse event recon-
struction problem into a solution based on efficient sampling of an ensemble of simula-
tions, guided by statistical comparisons with data. We have developed such an event
reconstruction capability that seamlessly couples a time-dependent data stream with
predictive models in a manner that allows dynamic improvement in estimates of the
source term parameters as data become available. This methodology provides proba-
bilistic estimates, which in turn are used to produce a composite plume prediction, with
inherent uncertainty quantification.

Our event reconstruction capability can be used to more efficiently and effectively
respond to hazardous atmospheric releases and to derive the maximum possible infor-
mation from expensive detection, warning, and incident characterization systems. The
atmospheric release inverse problem also provides an ideal application for the develop-
ment of general data-driven simulation methods, because the full solution requires the
treatment of time-dependent, non-linear, high-dimensional, multi-scale, and turbulent
(natural variability) behavior.
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2 Inverse Methods

Given a complete description of a physical system, we can predict the outcome of a
measurement via a ”forward” simulation which calculates the future state of a physical
system by solving a set of equations that govern its evolution from an initial state,
based on forcing and boundary conditions. The inverse problem consists of using the
result of some observations(s) / measurement(s) to infer the values that characterize the
initial state and forcing of the system. The particular atmospheric dispersion problem
of interest in this report is the determination of unknown release source characteristics,
which are often the primary source of uncertainty in real-world hazardous airborne
release events.

Inverse methods have a long history in geophysical applications. The use of inverse
methods in studies of global biogeochemical cycles is addressed by Kasibhatla et al.
(2000). More general summaries of inverse methodologies and their application to con-
stituent transport in oceans and atmosphere are offered by Wunsch (1996); Bennett
(2002) and Enting (2002) in recently published books. An exhaustive review of opti-
mization methods for parameter estimation has recently been presented by Aster et al.
(2005).

A variety of approaches to solving the atmospheric dispersion inverse problem have
been explored including non-linear optimization, back-trajectory, Green’s function, ad-
joint, and Kalman filter methods. However, these methods often fail due to the inherent
complexities, high-dimensionality, and/or non-linearity of the underlying physical sys-
tem. For example, Bennett (2002) points out that the adjoint approach introduces
errors due to linearization. Similarly, if empirical algorithms are used in a model (e.g.,
Gaussian puff splitting), construction of an appropriate adjoint may be problematic
(Errico, 1997). Traditional approaches also typically yield only a single “best” answer,
even though the inverse problem often does not have a unique solution (Tarantola,
2005). They cannot account for non-Gaussian error distributions and have particular
weaknesses for sparse (poorly-constrained) data problems, as well as the high-volume
(potentially over-constrained) and diverse data streams anticipated in the near future.

The coupling of Bayesian inference with stochastic sampling methodologies provides
a powerful alternative solution to the inverse problem. Bayesian inference uses data to
infer the probability of a proposed hypothesis. Good general references are “Bayesian
Theory” by Bernardo & Smith (1994) and “Bayesian Data Analysis” by Gelman et al.
(2003). The application of such methods to geophysical (seismic) inverse problems was
pioneered by Tarantola (1989). Advances in high-performance computing architectures
and wider availability of such platforms, make the use of Bayesian methods tractable
for atmospheric applications (Kandlikar, 1997; Rodgers, 2000).

We have developed a Bayesian event reconstruction methodology that seamlessly in-
tegrates observational data streams with predictive models. This approach is based on
the generation of an ensemble of predictive simulations, derived by efficient sampling of
unknown input or forcing parameters guided by statistical comparisons with concentra-
tion measurements. The new methodology also provides the means to assign measures
of confidence to plume predictions. Our approach is robust, flexible, and able to deal
with complex non-linear systems and to solve for parameters that exhibit non-Gaussian
distributions. Multi-scale (e.g., continental, regional, urban, building) applications and
a wide range of source types (e.g., single or multiple release locations; point, area, or
volume sources; moving vehicles) are supported, as appropriate to terrorist, acciden-
tal, or battlefield dispersal of radiological/nuclear materials, industrial chemicals, and
biological or chemical agents.
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3 Bayesian Inference with Markov Chain Monte Carlo

We first introduce notation and definitions that are used in this report. Let θ and y be
two random variables and define:

p(y) = the probability distribution of y

p(θ, y) = the joint probability distribution of θ and y

p(θ | y) = the probability distribution of θ conditional on y

Then the following relationships are known to hold:

(1) If the random variables θ and y are independent, then p(θ, y) = p(θ)p(y).

(2) Given the joint distribution of θ and y, the marginal distribution of y is given by
integrating over θ,

p(y) =

∫

θ

p(dθ, y)

If θ is a discrete random variable with possible values θ1, . . . , θn, then p(y) =
∑n

i=1 p(θ = θi, y).

(3) The joint distribution, the conditional distribution, and the marginal distribution
are related by:

p(θ, y) = p(θ | y)p(y) = p(y | θ)p(θ).

3.1 Bayes’ Theorem

Reverend Thomas Bayes’ (1702–1761) theorem relates the conditional probability of an
event θ occurring, conditioned on the fact that an another event y has occurred, to
the probability of event y occurring conditioned on the fact that event θ has occurred.
Bayes’ theorem can be written as

p(θ | y) =
p(y | θ)p(θ)

p(y)
∝ p(y | θ)p(θ). (1)

One can think of θ as representing possible model configurations (parameters) and y as
the observed data. Then p(y | θ) is the probabilistic relationship between the observed
data y and a model configuration θ, and is referred to as the likelihood. The distribu-
tion p(θ) is called the prior distribution representing the a priori distribution of model
parameters θ. The desired end result is the posterior distribution of θ given the data y,
p(θ | y), which represents the possible set of model configurations given (conditional on)
the observed data.

Numerical evaluation of the denominator of Equation (1)

p(y) =

∫

p(y | θ)p(dθ).

can be prohibitively expensive, especially if the forward model is computationally inten-
sive and the dimensionality of θ is high. Fortunately, sample-based inferencing makes
this computation unnecessary. Instead realizations are generated from the (unscaled)
posterior distribution which in turn can be used to compute quantities of interest such
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as the mean, variance, and mode according to

Mean: E(θ | y) =

∫

θ

θp(dθ | y).

Variance: var(θ | y) =

∫

θ

(θ − E(θ | y))2p(dθ | y).and

Mode: argmax
θ

p(θ | y).

3.2 Stochastic sampling for Bayesian inference

We use a Markov Chain Monte Carlo (MCMC) procedure based on the Metropolis-
Hastings sampling algorithm to calculate the posterior distribution . A good practical
introduction to MCMC is the volume ”Markov Chain Monte Carlo in Practice”, edited
by Gilks et al. (1995), the book ”Monte Carlo Strategies in Scientific Computing” by
Liu (2001), and the overview paper by Andrieu et al. (2003).

The Markov chains are initialized by taking samples from the prior distribution,
which is generally developed from any a priori knowledge of the event. A forward
dispersion calculation is then performed to provide an initial prediction for comparison
with observed data at sensors. The Metroplis-Hastings procedure then generates a
Markov chain of possible samples in order to obtain the probability distributions for
the unknown parameters of interest. As laid out in Table 1, a new sample (choice
of unknown source parameters) is drawn from a Gaussian distribution centered at the
current chain location. A forward calculation is then performed using the proposed
source term parameters and results are compared to concentration measurements at
the sensor locations. If the likelihood of the proposed set of source term parameters is
greater than that corresponding to the previous chain location, the proposal is accepted
and the Markov chain then advances to the new location. If the comparison is worse,
a Bernoulli random variable (a “coin flip”) is used to decide whether or not to accept
the new state. This step is critical in order to prevent chains from becoming trapped in
local minima, where comparisons are more favorable than values in the local sampling
area but where the chain has not converged on the ”true” global minima.

The posterior probability distribution in Equation 1 can be computed discretely from
the resulting Markov chain paths as

p(θ|y) ≈ π(θ) =

n
∑

i=1

(1/n)δ(θi − θ) (2)

which represents the probability of a particular model configuration (θ) giving results
that match the observations at sensor locations (y). Equation (2) is a sum over the
entire Markov chain of length n of all sampled values θi which fall within a certain
“bin”, e.g., δ(θi − θ) = 1 when θi = θ and 0 otherwise. If a Markov chain spends
several iterations sampling the same sampled values θi (e.g., multiple new proposals are
rejected because the given sample is more favorable than the new proposals), then the
value of p(θ|y) includes multiple contributions from that sample value in the summation
in Equation (2).

There are two aspects of MCMC sampling that affect the overall statistical efficiency
of the process (and the effective sample size) - the burn-in period and the chain’s auto-
correlation. The burn-in period represents the number of samples needed for the Markov
chain to relax from its initial condition and reach the stage in which it is sampling from
the target distribution π(θ). These initial samples must be discarded and not used for
inferencing in the the summation in Equation (2).
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Table 1: Metropolis-Hastings algorithm used in Markov Chain Monte Carlo

• Given a current state θi, draw a new candidate state θ̃ from the proposal distri-
bution, T (θ̃, θi), which can be taken to be a Gaussian distribution centered at the
previous accepted state.

• Compute the acceptance ratio as

ρ(θ̃, θi) =
π(θ̃)T (θi|θ̃)

π(θi)T (θ̃|θi)

where π(θ) is the discrete approximation of the posterior distribution defined in
Equation (2).

• Compute an acceptance probability α(θ̃, θi)

α(θ̃, θi) = min
(

ρ(θ̃, θi), 1
)

• Draw u from the uniform distribution U [0, 1] and update the state to θi+1 accord-
ing to the following procedure

θi+1 =

{

θ̃ if u ≤ α(θ̃; θi)

θi otherwise

The Markov chain realizations θ
(1), . . . ,θ(N) do not form an independent set of

samples, since sequential realizations of π(θ) are obviously correlated. The degree of
auto-correlation depends on how well the proposal distribution is able to “mix” the
sample as well as the acceptance rate associated with the proposal distribution. A
proposal distribution that alters the chain too little at each step (θ̃ too close to θ) results
in a MCMC sample that is highly auto-correlated. On the other hand, if the proposal
distribution makes large changes at each step, a low acceptance ratio typically results
and the chain remains trapped in the same state for a long period of time, again resulting
in high degree of auto-correlation in the final sample. The optimal proposal distribution
is somewhere in between these two extremes. As a rule of thumb, an acceptance rate
around 25% is thought to be appropriate for multi-dimensional problems (Gelman et al.,
2003, page 306).

3.3 Likelihood Function

The likelihood function
p(y|θ) ∝ L(θ) (3)

is used to quantify the agreement between the model configuration and the data. The
likelihood function is typically defined by

ln [L(θ)] =

N
∑

i

((CM
i − CE

i )2)

2σ2
rel

(4)

where CM
i represent concentrations predicted by a dispersion model at locations i, CE

i

are the experimentally observed data, and σrel is the standard deviation of the combined
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forward model and measurement errors. The squared difference is summed over the N
sensor locations. For the event reconstruction application, we use the natural logarithm
of the model and data values in this formula. This prevents large concentration val-
ues from dominating the likelihood calculation, since the range of concentration data
typically spans many orders of magnitude.

The likelihood function is calculated as the forward model for each proposed new
state (sample source location x,y, and rate q values) is computed. As per the MCMC
process described above, the proposed state is accepted if either

Lprop > L or Lprop − L ≥ rand(0, 1] (5)

where Lprop is the likelihood of the proposed state, L is the previous likelihood value,
and rand denotes a random number generated from a uniform distribution.

3.4 Necessary Statistical Convergence Criterion

Multiple chains are used in order to obtain better statistical sampling of the parameter
space and to enable convergence monitoring (thus Equation (2) is overly simplified).
Following Gelman et al. (2003), statistical convergence is monitored by computing the
ratio of the variance of sampled parameters within one chain to the variance among
different chains.

If there are m Markov chains of length n we can compute the between-chain variance
B as

B =
n

m − 1

m
∑

j=1

(θj − θ)2 (6)

where

θj =
1

n

n
∑

i=1

θij (7)

is the average value along each Markov chain (a sample from a given chain is denoted
by θij) and

θ =
1

m

m
∑

j=1

θj (8)

is the average of the values from all Markov chains. The within-chain variance W is
given by

W =
1

m

m
∑

j=1

s2
j (9)

where

s2
j =

1

n − 1

n
∑

i=1

(θij − θi)
2 . (10)

An estimate of the variance of θ is then derived from B and W according to

var(θ) =
n − 1

n
W +

1

n
B (11)

and the convergence parameter, R, is computed as

R =
var(θ)

W
. (12)

The necessary condition for statistical convergence to the posterior distribution is that
R approaches unity (Gelman et al., 2003). In practice, this is not always a sufficient
condition as will be seen later (Section 4.

8



Figure 1: Plume generated with the INPUFF code and used to create synthetic sensor
data. Red color contours represent higher concentration levels and blue colors reflect
low concentrations.

4 MCMC Atmospheric Release Event Reconstruc-

tion

We developed a flexible and computationally efficient event reconstruction framework
that enables rapid integration of a wide range of forward dispersion models and stochas-
tic sampling methods. The computational framework was built up and tested in stages.
For rapid prototyping, we implemented a relatively simple short-range dispersion model
and verified our implementation using synthetic (model-generated) data and homoge-
neous conditions. We then proceeded with the integration of a more complex oper-
ational dispersion Lagrangian particle model and conducted tests using regional-scale
tracer experiments and a real-world accidental atmospheric release. For complex urban
environments, data from urban field studies were used with an empirical urban model
and a full-physics building-resolving computational fluid dynamics model.

4.1 Synthetic Data Examples

For our initial development we used a Gaussian puff dispersion model INPUFF and
model-generated synthetic data (for simplicity, the synthetic data was generated by
INPUFF). These examples demonstrate the ability of the Bayesian inference stochastic
sampling approach to simultaneously estimate both source locations and release rates
and provide probabilistic solutions consistent with the available data.

The example domain was taken to be a flat 6km × 6km square domain. The wind
flows from left to right and is uniform over the domain. The ”ground-truth” scenario
releases material from a point location for one hour at a constant release rate. Synthetic
data were generated for each sensor as six ten-minute averages covering the hour release
period. The scenario plume at the end of the one-hour period is shown in Figure 1.

In the first application of our MCMC methodology, a 2 × 2 square sensor array was

9



Figure 2: Posterior probability distribution of the source location for a synthetic data
case using a square sensor array (four sensors, represented by diamonds). The source
location is indicated by the black dot at the coordinates (1.0, 3.0). Red color contours
represent high probability density and blue color contours represent low probability
density.

used to reconstruct the event. An uninformed prior distribution (a flat distribution
covering the entire simulation domain) was chosen as the starting point. The posterior
distributions for the source location and release rate are presented in Figures 2 and 3.

Our second example demonstrates the ability of the methodology to tackle problems
that do not have a unique solution and detect all possible source term parameter com-
binations consistent with the observed data. Synthetic data were generated for three
sensors located on a line parallel to the wind direction with the source offset with respect
to that line. By symmetry, it is obvious that the sensor measurements are consistent with
two possible source locations. This non-unique solution is clearly seen in the posterior
probability distribution presented in Figure 4, which has two modes corresponding to
the two equally probable source locations. Figure 5 shows the four Markov Chains used
in reconstructing the source. All the chains are well-mixed, i.e., both chains thoroughly
explore both equally probable source locations.

The final synthetic example is based on synthetic data from three sensors arranged in
a triangular array Figure 6. The impact of different choices of sensor array configurations
on the posterior probability distribution can be compared to the inverse solutions based
on the square sensor array (Figure 2). The smaller three-sensor array results in a broader
posterior probability distribution for the location indicating greater uncertainty. More
detailed study of the effects of sensor array size and configuration were pursued using
the Copenhagen tracer study data set discussed in Section 4.3.
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Figure 3: Source release rates for a synthetic case based on concentrations from a four-
sensor square array using four Markov chains. Dotted line - actual release rate; solid
line - mean of reconstructed release rates from four Markov chains; colored lines - release
rates corresponding to each Markov chains; dashed lines - +/− one standard deviation
from the mean value (solid line).

Figure 4: Bimodal posterior probability distribution of the source location for a syn-
thetic data case using concentrations from a linear array of three sensor (black dia-
monds). The source location is indicated by the black dot at the coordinates (1.0, 3.0).
Red color contours represent high probability density and blue color contours represent
low probability density.

11



Figure 5: Markov chains explore two posterior probability distribution modes for the
source location for a synthetic data case using concentrations from a linear array of
three sensors. Light colors represent early stages of MCMC iteration procedure and
dark colors represent late stages.

Figure 6: Posterior probability distribution of the source location for a synthetic data
case using concentrations from a triangular sensor array. Red color contours represent
high probability density and blue color contours represent low probability density.
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4.2 Prairie Grass Field Study

As the next step, we extended the MCMC system to incorporate a three-dimensional
Lagrangian particle dispersion code (LODI), which is a core operational model of the
National Atmospheric Release Advisory Center (NARAC) used for emergency response
applications. An analysis of LODI numerical errors (discretization and spatial smooth-
ing) was carried out in order to account for the uncertainties involved in the inversion
procedure. We first tested the MCMC-LODI system using data from a local-scale at-
mospheric tracer study, Project Prairie Grass.

The Prairie Grass field experiment (Barad, 1958, Ed.) has become the standard
dataset for the evaluation of short-range (1 km) atmospheric dispersion. Multiple near-
surface releases were carried out under a wide range of atmospheric conditions (ASTM,
2000). The site consisted of a flat agricultural field with short dry stubble grass. Neu-
trally buoyant sulfur dioxide was released for ten minutes from a small tube at a height
of 0.46 m and integrated concentrations were then measured downwind at a height of
1.5m on five monitoring arcs located 50, 100, 200, 400, and 800 m from the source.
Observations were reported as one ten-minute average per sensor. The lack of time
resolution makes this dataset particularly challenging for event reconstruction. In par-
ticular, we expect larger uncertainties in the estimated source location, especially for
the streamwise direction.

A test of the event reconstruction capability was performed using release 5 of the
Prairie Grass field study. Experiment 5 is typical of slightly unstable atmospheric bound-
ary layer conditions corresponding to Pasquill-Gifford stability class B. Winds were from
the south (176 degrees) at 6.5 m/s, as measured at 2m. A wind field for the domain
was constructed using this observation, a roughness length of 0.08, an inverse Monin-
Obukhov length of -0.03, a boundary-layer height of 1100m, a surface-layer height of 16m,
and a friction velocity of 0.39 using ADAPT (Sugiyama & Chan, 1998), the NARAC
meteorological data preprocessor. This wind field was provided to LODI as a basis for
LODI’s forward runs, which used 10000 particles per simulation.

Sensor characteristics were considered in the handling of data in the reconstruction
process. The minimum sensitivity level of the sensors is 10−8 kg/m3 and the saturation
level is 10−3 kg/m3. The measurements CE

ij and modeled concentrations CM
ij were first

compared to the detection range of the instruments used. Any measurements or modeled
concentrations above the saturation level of the instrument were set to the saturation
level; any measurements or modeled concentrations below the detection limit were set
to the detection limit or sensor sensitivity threshold.

Reconstruction of the source location and release rate were based on comparison
of sensor data with predictions from LODI. Although 138 of the 545 sensors reported
measurements of the plume, we only used data from eight randomly-selected sensors on
the two outer-arcs (400m and 800m from the source). Four of these sensors reported no
measurements, which helped to bound the plume. The sensors which detected the plume
had values ranging from 3.6 × 10−8 to 1.074 × 10−6 kg/m3. The event reconstruction
used a likelihood function based on the base ten logarithmic differences of the measured
and predicted concentrations.

The reconstruction of source location and release rate was carried out with four
Markov chains and 2000 iterations per chain. The reconstruction calculates a probabil-
ity distribution for the source region that includes the actual source location, but the
contours of high probability extend in the direction of the mean flow due to the lack of
time resolution in the sensor data (Figure 7) and there is a wide range in possible source
strengths (Figure 8). Other studies (Lundquist et al., 2005) show that this “smearing”
in the direction of the flow does not occur if sensor data at a higher time resolution is
used in the reconstruction.
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Figure 7: Probability distribution for the source location for Prairie Grass release 5.
The x and y axes denote west-east and south-north location in km. Squares indicate
the locations of the sensors, while the color filling the squares denotes the observed con-
centration (white indicates a zero observation, and blue, green, and yellow indicate low,
medium, and high concentrations. The colored contours indicate the posterior probabil-
ity distribution for the source location, with orange indicating the highest probability
area. The actual source location, marked by a triangle, lies within the 50th percentile
confidence contour.

The estimated source release rate shown in (Figure 8) is bimodal - the lower range
of release rates includes the actual source release rate, while the higher release rate
mode corresponds to a possible source upwind of the actual release. We demonstrate
this by estimating the source location assuming a known release rate. The resulting
conditional probability for the source location (Figure 9) shows the expected reduction
in uncertainty of the reconstructed source location, with the actual release site lying
within the 90th percentile confidence interval.
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Figure 8: Probability distribution of source release rate for Prairie Grass release 5. The
actual release rate was q = 0.05 g/s.

Figure 9: Conditional probability of the source location conditioned on the actual re-
lease rate for the Prairie Grass release 5. Axes and symbols are as in Figure 7. Instead
of including all accepted locations, the probability contours only depict the locations
from accepted proposals with source strengths close to the actual value. Warmer col-
ors indicate higher probability; the real source location lies within the 90th percentile
confidence interval.
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Figure 10: Domain of the Copenhagen experiment. The red triangle denotes the actual
source location and the yellow dots indicate the three arcs of SF6 sensor locations. The
most distant sensors are approximately 6km from the source.

4.3 Copenhagen Tracer Experiment

The Copenhagen experiment, carried out in Denmark in 1978 and 1979, provides both a
larger domain (6km from the source to the most distant sensor) and time resolution in the
sensor data. The complete Copenhagen dataset documents eleven 1-hr duration releases
of SF6 from a height of 115 m. SF6 is measured downwind along arcs 2 km, 4 km,
and 6 km from the source. Three 20-minute averages of SF6 concentration are available
from each sensor. A detailed technical description of the experiment and experimental
methods is given in Gryning (1981) and Gryning & Lyck (1984).

The upwind area included some industrial, farmland, and moor areas, but was char-
acterized as mostly residential, while the downwind sector is residential (see Figure 10).
The roughness length for the area is estimated to be about 0.6m, based on vertical wind
variances and mean wind profiles, which were obtained from the same tower from which
the tracer was released. All releases occurred during the day, and stability estimates
indicate neutral to moderately convective conditions. Release rates varied from 2.4 to
4.7 g s−1. Wind speed, wind direction, and temperature were measured on the release
tower at heights ranging between 2 and 200 m; turbulent quantities were measured at
115m. Winds were typically from the west or north-west. Boundary-layer height was
estimated from a radiosonde released at Jægersborg, 5 km NE of the release tower.

The SF6 detectors exhibited a 20% systematic error and a 2% random error. The
sensitivity level of the sensors was given in Gryning (1981) as 2× 10−12 ppb, or 12.5 ng
m−3. Accordingly, the lowest concentration level used for the reconstruction was set to
10 ng m−3. No information on instrument saturation was provided, so the ceiling for
measured concentrations was set just above the highest observed level (7669 ng m−3)
at 105 ng m−3.

We chose Intensive Operational Period 10 (IOP10) for our event reconstruction ex-
ample, because it utilizes the largest number of sensors (45) and represents a case in
which the plume spread is entirely encompassed by the sensor arcs. For IOP10, 39
sensors reported hits and 6 sensors reported misses. Winds varied slightly through-
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out the three hours of IOP10, veering from south-south-westerly to south-westerly and
increasing from 4.6m/s to 5.7m/s at the surface, and from 9.9m/s to 11.45m/s at 200m.

The source term parameters were estimated using the 20-minute integrated concen-
tration data collected by the sensors commencing one-half to one hour after the release
began, as well as hourly-averaged wind fields developed using the ADAPT meteorologi-
cal data assimilation model. Fixed values included the release start time and duration,
the release height, and the knowledge that the release rate was constant throughout the
duration of the release. Because the domain is relatively small, we assumed that the
source started releasing in the time period in which the first measurements are available.
The source term parameter reconstruction determined horizontal, x and y coordinates
of the static point source and the release rate q.

The actual source was located at [2,5] km with the center of the domain [5,5] km
located just upwind of the second arc. A flat, uninformed prior distribution was used
for both the location and the release rate. The prior for the source location was limited
to the domain of interest, a 6km by 6km square, that includes the source and all of
the sensors. The prior distribution for the release rate was bounded from below by the
sensitivity of the sensors to (10 ng m−3) and from above by the assumed saturation level
(105 ng m−3). The release rate was allowed to range (unreasonably widely) between 10
µg s−1 and 1000 kg s−1 for each forward run.

Each forward run of the NARAC Lagrangian particle dispersion model, LODI, used
10000 particles. Concentrations in each 100 m× 100 m grid cell extending from the
surface to 10m above the surface were calculated for each forward run. Predicted val-
ues were compared with observed concentrations using the following weighting method.
First, the LODI grid cell containing the sensor was identified (e.g., x = m and y = n).
Then the sensor concentration (Ĉ) at (m, n) was calculated by considering the concen-
trations (C) in neighboring cells:

C(m, n) = 2C(m, n) + C(m − 1, n) + C(m + 1, n) + C(m, n − 1) + C(m, n + 1)

+
1

2
(C(m − 1, n − 1) + C(m + 1, n − 1)

+ C(m − 1, n + 1) + C(m + 1, n + 1))

The standard deviation of the combined forward model and measurements error, σrel,
(Equation 4) was set at 0.2, to ensure a high rejection rate, implying a high confidence
in both observations and model predictions and resulting in a narrower final probability
distribution.

4.3.1 Base case using all available sensors

We first carried out the inversion using the data from all of the 45 sensors that reported
hits during IOP10. The posterior probability distribution is presented in Figure 11.
The actual source is contained within the 80 percentile confidence level, even though
errors in meteorology were not explicitly considered. The estimate of the source release
rate as a function of the iteration number is given in Figure 12. The thick red line
represents the actual release rate and the thick black line is the mean of four Markov
Chains shown by the thin colored lines. The uncertainty in reconstructed release rate is
within approximately a factor of two of the actual release rate.

The measure of statistical convergence R (Equation 12) is shown in Figure 13 as a
function of the iteration number. The location coordinates converge rapidly to their
respective marginal posterior probability distributions (R ≈ 1), while the release rate
converges considerably slowly. This slower convergence is related to the relatively larger
uncertainty in the source location in the along-wind direction, which occurs because
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Figure 11: Probability distribution for the source location using the data from all 45
available sensors. Diamonds indicate the locations of sensors used in the reconstruction.
The triangle indicates the actual source location. Colored contours show the posterior
distribution for the source location, with warmer colors indicating higher confidence.

point measurements do not clearly distinguish between a high release rate by a distant
source and a low release rate from a nearby location.

4.3.2 Effect of using fewer sensors

In an actual event, it is unlikely that 40+ sensors would be available. To stress our
method, a reconstruction was carried out for the same IOP using only nine of the 45
available sensors. Since our Prairie Grass and synthetic data investigations revealed the
importance of including some zero measurements in order to reach convergence quickly,
the nine chosen sensors bounded the plume: three sensors reported data and six reported
no data. The posterior probability distribution successfully predicts the actual release
location to within the 50-percentile confidence level (Figure 14).

In Figure 15, the statistical convergence parameter R is presented. We observe that
the location coordinates again converge rapidly to their respective marginal posterior
probability distributions (R ≈ 1), while the release rate converges more slowly and levels
off at a value of R = 3.

4.3.3 Robustness of the source reconstruction procedure

To demonstrate the robustness of the Bayesian stochastic methodology in cases involv-
ing potentially conflicting data, we also reconstructed IOP10 using ”broken” sensors.
Data from 15 randomly selected sensors (one-third of the total) were replaced with new
values. Five sensors that reported zero concentrations were given false positive values;
five sensors that reported above threshold data were replaced with zero concentrations
(false negative values); and the third group of five sensors were given different (but
possible) concentration values. Figure 16 shows the posterior probability distribution
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Figure 12: Reconstruction of the release rate using the data from all 45 available sensors.
The thick red line is the actual release rate; the thick blue line is the mean of four Markov
Chains; and the thin colored lines shows the individual chains.

for the source location. It can be seen that the ”broken” sensors introduce bias in the
source term inversion, such that the calculated probability distribution is translated in
space in comparison to the solution based on the actual measurements. There also is a
larger uncertainty in the source location as evidenced by the flatter and wider posterior
probability distribution. Despite the degree of error introduced into the data, the ac-
tual source is still contained within the 10 percentile confidence level. Interestingly, the
reconstruction of the release rate yields results qualitatively and quantitatively similar
to that when all the available sensors are used (Figure 17).
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Figure 13: Convergence of the reconstruction of Copenhagen IOP10 using measurements
from all 45 available sensors. The y-location parameter (purple line) converges most
rapidly, while the release rate parameter (red line) only converges after 2900 iterations.

Figure 14: Probability distribution of source location, as in Figure 11, but using mea-
surements from a reduced set of 9 sensors out of 45 available sensors.
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Figure 15: Statistical convergence measure, R, of stochastic procedure as a function of
the number of iterations.

Figure 16: Probability distribution of the source location. The robustness of the
methodology based on Bayesian inference with stochastic sampling is tested by solv-
ing the inverse problem using data in which 15 of the 45 sensors are assigned incorrect
values.
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Figure 17: As in Figure 12, but for the reconstruction using data from 45 sensors, 15
of which were altered.
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4.4 Continental Scale Real World Event Reconstruction

The Bayesian event reconstruction methodology was successfully applied to a continental-
scale accidental release of Cesium-137 (Cs-137) from a steel mill at Algeciras, Spain in
late May, 1998 (Delle Monache et al., 2007). The Bayesian MCMC approach was com-
bined with simulated annealing and adaptive procedures to assure a robust and efficient
exploration of parameter space. The simulation set-up was chosen to reflect an emer-
gency response scenario in which only the source geometry and release time are assumed
to be known. The event reconstruction process was able to estimate the likely source
locations to within 100 km of the actual site, after exploring a domain covering an
area of approximately 1800 by 3600 km. The source strength is reconstructed with a
distribution of values of the same order of magnitude as the upper end of the range
as reported by the Spanish Nuclear Security Agency. By running on a large parallel
cluster, the inversion results was completed in a few hours, well within the necessary
time scale for continental-scale emergency response applications. The complete text of
a submitted paper (Delle Monache, L., Lundquist, J.K., Kosović, B., Johannesson, G.,
Dyer, K.M., Aines, R.D., Belles, R.D., Hanley, W.G., Larsen, S.C., Loosmore, G.A.,
Nitao, J.J., Sugiyama, G.A., Vogt, P.J., 2007: Bayesian inference and Markov Chain
Monte Carlo sampling to reconstruct a contaminant source at continental scale, UCRL-
JRNL-226644-DRAFT) is contained in Appendix A.
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4.5 Event Reconstruction for Urban Releases

The ability to determine the source of a contaminant plume in urban environments
is crucial for emergency response applications. This is an extremely difficult problem,
since the transport of material is affected by the presence of individual buildings, which
can divert flow in unexpected directions. However, high-resolution flow simulations are
now possible for predicting plume evolution in complex urban geometries, which make
it possible to apply event reconstruction to this critical application.

We integrated two building resolving urban dispersion models into the the Bayesian
MCMC event reconstruction framework - a full-physics computational fluid dynamics
(CFD) model FEM3MP (Finite Element Model 3 Massively Parallel) and a computationally-
inexpensive empirical Gaussian puff Urban Dispersion Model (UDM). We conducted
tests of the performance of the source inversion methodology for both a protoype isolated
building and for tracer releases conducted during the Joint Urban 2003 field experiment
in Oklahoma City.

CFD models are computationally intensive models capable of resolving details of
flows and dispersion in complex urban environments. To enhance perfomance, steady-
state flow fields generated by the FEM3MP model were used to drive thousands of
forward dispersion simulations to create a database for the inversion procedure. We
then used a Green’s function approach to successfully solve the inverse dispersion prob-
lem and simultaneously determine the source location and release rate to within narrow
confidence intervals. Green’s function methods can be applied to dispersion problems
characterized by dispersion coefficients that are not dependent on concentration, which
enables the decoupling of source location and release rate inversion. Further compu-
tational performance enhancements can be obtained through the use of a reciprocal
Green’s function approach as described in Nitao (2004).

Using FEM3MP we were able to estimate the source location to within a block
and the release rate to within a factor of two for the IOP3 tracer release of the Joint
Urban 2003 field study (Chow et al., 2007). The results of the inversion indicate the
probability of a source being found at a particular location with a particular release
rate. A composite plume showing concentrations at the 90% confidence level can then
be constructed using the realizations from the reconstructed probability distribution.
The compositve plume contours can be interpreted as the likelihood of the concentration
at a particular location being above or below a specified threshold value. Appendix B
contains a copy of a submitted journal paper showing these and other results.

High-resolution computational fluid dynamics (CFD) models are computatoinally
expensive. We therefore tested our event reconstruction method with an urban puff
model developed by the United Kingdom’s Defence Science Technology Laboratory’s
(Dstl) Urban Dispersion Model (UDM). The UDM provides rapid urban dispersion
simulations by combining traditional Gaussian puff modeling with empirically deduced
mixing and entrainment approximations for urban areas (Hall et al., 2003). Our event
reconstuction results showed significantly reduction in the initial uncertainty in source
term parameters, although model approximations resulted in some bias in the recon-
structed parameters (Neuman et al., 2006). Appendix C contains a fuller discussion of
this results of this work.

Although developed and used independently, event reconstruction using the UDM
and the finite-element CFD code can be complementary in emergency response applica-
tions. It is possible to improve both the speed of execution and obtain high-resolution
accuracy by using a combination of the two models and a staged sampling approach
(Aines et al., 2002, e.g.,). The faster but less accurate model is applied to reduce the
initial uncertainty. The posterior distribution from this model, then becomes the prior
distribution to be used with the computationally-intensive high-resolution model to re-
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fine the final event reconstruction.
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4.6 Event Reconstruction Sensor Siting

Our event reconstruction capability can be used to help design sensor networks net-
works for detecting and responding to atmospheric releases of hazardous materials
(Lundquist et al., 2005). A quantitative measure of the reduction in uncertainty can
be utilized by policy makers to determine the cost/benefit of deploying sensors.

Two numerical experiments were performed to demonstrate the utility of the event
reconstruction methodology for sensor network design. In the first set of studies, only
the time resolution of the sensors varied between three candidate networks. The most
“expensive” sensor network offered few advantages over the moderately-priced network
for the selected release. The second set of studes explored the implications of sensor
detection limits, which can have a significant impact on costs. In this experiment, the
expensive network most clearly defined the source location and release rate. The other
networks provided insufficient data to distinguish between two possible clusters of source
locations. Aggregation of the results into a composite plume can be used by decision-
makers to distinguish the utility of the expensive sensor network in enhancing situation
awareness.

Full details about these sensor siting studies can be found in the report (Lundquist,
J.K., Kosović, B., Belles, R., 2005: Synthetic Event Reconstruction Experiments for
Defining Sensor Network Characteristics. LLNL Technical Report UCRL-TR-217762)
included in Appendix D.
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5 Sequential and Hybrid Monte Carlo Sampling

In previous sections, we presented the development of our Bayesian methodology with
MCMC stochastic sampling and demonstrated its effectiveness in atmospheric release
event reconstruction. MCMC sampling was shown to be efficient for problems that are
not strongly time-dependent and therefore require only limited time resolution. However,
for dynamic events characterized by high frequency data streams, the MCMC algorithm
becomes computationally prohibitive as it must re-incorporate all of the available data
at every step of the sampling procedure.

Sequential Monte Carlo (SMC) was originally designed and developed to address the
problem of sampling from a time-dependent, dynamically-evolving posterior distribution.
SMC is inherently parallel and therefore suitable for efficient application on massively
parallel platforms. For optimal performance, we created a hybrid methodology that
takes advantage of the strengths of MCMC during the initial phase of a release when
only limited amount of data is available and uses SMC at later stages as data streams
increase. Technical report UCRL-TR-207173 (Johannesson et al., 2004) presented in
Appendix E covers in detail the development, verification, and effectiveness of the hybrid
SMC-MCMC approach.

We also explored the capabilities of the SMC methodology when applied to the
reconstruction of events characterized by complex sources. Our preliminary results for
cases involving multiple simultaneous point sources or moving point (vehicular) sources
have shown that the hybrid sampling methodology is a promising approach to solving
these complex inverse problems.
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6 Summary

We have developed an atmospheric release event reconstruction methodology based on
Bayesian inference combined with stochastic sampling procedures (MCMC, SMC, and
hybrid). Although this approach can be computationally intensive, it is completely
general and can be used for time-varying release rates, complex urban flow conditions,
non-linear problems, and problems characterized by non-Gaussian distributions. The
results of the inversion, specifically the posterior probability distribution, indicate the
probability of a source being found at a particular location with a particular release
rate. These results inherently reflect any lack of quality or spatial/temporal resolution
in the observed data. For each reconstruction, a composite plume can be calculated
which contains probabilistic information from the iterative inversion procedure. This
plume shows the the likelihood of the concentration at a particular location being above
(or below) specified threshold values.

We created a modular, scalable computational framework to accommodate the full set
of stochastic methodologies (e.g., MCMC, SMC, hybrid stochastic algorithms, ”Green’s
function”, ”reciprocal” methods), as well as a selection of key classes of dispersion mod-
els. This design provides a clear separation of stochastic algorithms from predictive
models and supports parallelization at both the stochastic algorithm and individual
model level.

After demonstrating of the feasibility of the MCMC stochastic approach using a
Gaussian puff model INPUFF, we incorporated a three-dimensional Lagrangian particle
dispersion code (LODI), which is a core operational NARAC dispersion model, into
the stochastic inversion framework. We first tested the event reconstruction suite using
integrated concentration measurements from the Prairie Grass field experiment. We
sub-sampled the data by reducing the number of sensors used in the reconstruction
process to quantify system performance and demonstrated the ability to reconstruct a
release event with high confidence using only a few data points.

We then carried out an extensive investigation of the MCMC event reconstruction
capability using an intermediate-scale field study, the Copenhagen tracer experiment.
We tested the robustness of the source inversion capability even given sparse, contradic-
tory, and/or inaccurate data. The Copenhagen dataset was then used as a starting point
for a study into the design of sensor networks by using the event reconstruction capabil-
ity to define the minimum necessary requirements for useful network architectures. We
also demonstrated the applicability of our Bayesian methodology for continental-scale
atmospheric releases by reconstructing a real-world accident in Algeciras Spain.

To address urban environments, we integrated two dispersion models into the MCMC
event reconstruction framework: an empirical urban Gaussian puff model UDM and a
full-physics CFD solver FEM3MP. We demonstrated the successful inversion of a pro-
totype problem involving flow around an isolated building using the building-resolving
FEM3MP model. Application of FEM3MP to the complex conditions present during
IOP3 and IOP9 of the Joint URBAN 2003 experiment in Oklahoma City also proved
successful despite the complex urban conditions. The advantages and limitations of the
computationally efficient UDM were demonstrated using data from IOP3 of the Joint
Urban 2003 experiment.

We initiated the development of an SMC methodology and demonstrated its perfor-
mance advantages for treating time-dependent (dynamic) systems and high-frequency
data streams. We also developed hybrid stochastic algorithms that combine the advan-
tages of MCMC for relatively limited amounts of data with the efficiency of SMC in the
later stages of an event when high-volume data streams become available.

Our stochastic methodology for dynamic data-driven airborne release event recon-
struction is flexible and robust. Future extensions of this capability will incorporate
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time-varying releases, unsteady flow conditions, and elevated sources. Meteorological
uncertainty will be incorporated to allow for errors induced by limited observational
data or errors in numerical weather prediction forecasts. We will also extend the event
reconstruction methodology to examine other source parameters such as the particle-
size distribution, isotopic or chemical composition, and the initial source geometry. A
further possible extension would be to combine our event reconstruction methodology
with other inversion approaches.

Atmospheric release event reconstruction addresses immediate critical homeland and
national security needs for counter-terrorism, consequence management, emergency re-
sponse, attribution and attribution applications. This capability directly leverages the
enormous investments being made at LLNL and other institutions to develop sensors,
real-time data acquisition and communication systems, predictive models, and high per-
formance computing. An operational event reconstruction tool will transform the way
we respond to terrorist attacks, industrial and transportation accidents, and military
engagements, by reducing situational awareness uncertainties and facilitating informed
decision-making.
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Abstract

A methodology to reconstruct a source from a limited set of measurements and prior 25

knowledge of the release is applied to a real accidental radioactive release at the 

continental scale, that occurred at the end of May, 1998, near Algeciras, Spain.  The 

methodology combines Bayesian inference with Markov Chain Monte Carlo sampling

(MCMC).  Annealing and adaptive procedures are implemented to assure a robust and 

efficient parameter-space exploration.  The simulation set-up reflects an emergency 30

response scenario where only the source geometry and release time are assumed to be 

known, with the latter still highly uncertain at this date.  The Bayesian stochastic

algorithm is able to provide likely source locations within 100 km from the true source,

after exploring a domain covering an area of approximately 1800 by 3600 km.  The 

source strength, whose true value is uncertain as well, is reconstructed with a distribution 35

of values of the same order of magnitude as the upper end of the range reported by the

Spanish Nuclear Security Agency.  By running the Bayesian MCMC algorithm on a large 

parallel cluster (with less than a thousand processors) the inversion results could be 

obtained in few hours as required for emergency response applications at the continental 

scale.40

Keywords: Bayesian inference, Markov Chain Monte Carlo sampling, inverse modeling, 

source reconstruction, emergency response.
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1. Introduction
45

Knowledge of the temporal and spatial evolution of a contaminant released into the 

atmosphere accidentally or deliberately is fundamental to adopting efficient strategies to 

protect the public health, and to mitigate the harmful effects of the dispersed material.  In 

emergency response situations the source parameters may not be known.  Typically a 

source is assumed, and assessment of the trajectory, spread, and ultimate fate of a 50

contaminant plume is based on predictions from atmospheric dispersion models. The 

accuracy of these predictions is affected by uncertainties in several components of the 

plume prediction, including the atmospheric dispersion models themselves, the 

meteorological models used to drive the dispersion models, the atmospheric data 

assimilated by the meteorological models, and uncertainties in the parameters describing 55

the contaminant source.

Among these sources of uncertainty, those comprising the initial state of the contaminant 

are often the most significant, and as such provide the central focus of this study.  A 

methodology to solve the “inverse problem” is proposed to reconstruct unknown source 60

parameters given a set of downwind measurements at a time after the release.  The 

inversion algorithm is based on Bayesian inference combined with a Markov Chain 

Monte Carlo (MCMC) procedure (Gilks et al., 1996; Gelman et al., 2003).  This 

methodology has been used to reconstruct atmospheric releases at local (~1 km) and 

regional (~10 km) scale using data from the Prairie Grass and Copenhagen tracer 65

experiments (Lundquist et al., 2005). It also has been successfully applied in urban 

settings using building-resolving computational fluid dynamics simulations (Chow et al., 

2006).  The algorithm is applied here for the first time to a continental-scale accidental 

release of radioactive material from near Algeciras, Spain during May of 1998.  This 

event affected for several days much of continental Europe including locations few 70

thousands of kilometers downwind.  The methodology provides a skillful, robust 

statistical characterization of the reconstructed source parameters in the presence of a 

complex atmospheric flow field using only crude measurements.
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Algorithms based on integrating the adjoint dispersion model backward in time (e.g., 75

Pudykiewicz 1998; Keats et al., 2006) have been implemented to solve reconstruction 

problems. While such approaches can substantially increase the speed and efficiency of 

the inversion process, there are several limitations. Foremost among these drawbacks, 

from the perspective of emergency response, is their lack of flexibility.  Methods based 

on the adjoint model require extensive modification and refinements for every change to80

the framework components (e.g., forward models, datasets or dispersion scenarios) limit 

their usefulness especially during the initial stages following a release, when different 

characterizations using different datasets and component models are desirable.  

Additionally, adjoint-based methods are limited to processes that can be described by 

linear equations (Enting, 2002).  For instance, this constraint precludes their applicability 85

to cases during which chemical reactions are an important component of the dispersion 

process, or to the reconstruction of unknown meteorological parameters.  

The following section provides a detailed description of the reconstruction algorithm. 

Section 3 discusses the Algeciras release incident, the reconstruction results of which are 90

detailed in Section 4. Section 5 presents the conclusions and follows with a discussion of 

computational issues related to using our methodology as an emergency response tool.
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2. Methodology

The stochastic event reconstruction algorithm is based on Bayes’ theorem and a MCMC95

procedure to sample the unknown parameter space (Gilks et al., 1996; Gelman et al., 

2003). The following subsections briefly summarize the theory on which the 

methodology is constructed and outline the main steps of the procedure.

2.1 Theoretical Framework100

Bayes’ theorem, as applied to a source reconstruction problem, can be stated as follows:

)(
)()|()|(

M
SSMMS

p
ppp = (1)

Here ()p is a probability distribution, ),,( qyx=S is the state vector formed by the point 

source parameters (x and y are the source horizontal coordinates and q is the emission 105

rate), and M is an array formed by the measurements. Bayes’ theorem relates the 

posterior distribution, )|( MSp , to the product of the probability of the measurements 

given the source parameters, )|( SMp , also called the likelihood function, and the 

probability of the source parameters prior to any knowledge of the measurements, )(Sp , 

also called the prior. Here x, y, and q are assumed to be the unknown parameters, but in 110

general the Bayes’ theorem can be applied with S including also other parameters, e.g, z

(the vertical coordinate), or the release time and duration.

Bayes’ theorem is often expressed alternatively as

)()|()|( SSMMS ppp ∝ (2)115

This form preserves the most important information contained in (1), the spatial 

distribution of the posterior probability, and avoids evaluation of the marginal 

distribution of M, ∫= SSMSM dppp )|()()( , for which analytical solutions are rare and 

computation is expensive.

120
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In this study Bayes’ theorem is applied to describe the conditional probability )|( MSp

of a source described by x, y and q, given the observed sensor measurements.  To 

estimate the unknown source parameters, i.e., to reconstruct the source using (2), the 

posterior distribution must be sampled.  Sampling the posterior distribution (left-hand 

side of Equation (2)) involves computing the probability distribution )|( SMp for any 125

proposed S realization. )|( SMp quantifies the likelihood of a set of measurements M

given the source parameters S.  This likelihood is computed by running a forward 

dispersion model with the given source parameters S and comparing the model predicted 

concentrations with the sensor measurements (Section 2.2.1).  The closer the prediction 

to the measurements, the higher the likelihood of the source parameters.130

2.2 The Algorithm

The forward dispersion simulation is conducted using the Lagrangian Operational 

Dispersion Integrator (LODI) model (Ermak and Nasstrom, 2000; Nasstrom et al., 2000) 135

developed at the National Atmospheric Release Advisory Center (NARAC) at Lawrence 

Livermore National Laboratory (LLNL).  LODI is driven by meteorological data that can 

be obtained from a variety of sources including real-time observations, atmospheric 

forecast models, atmospheric analysis fields, or any combination of the above.  The 

posterior distribution is sampled with a MCMC procedure via a Metropolis-Hasting 140

algorithm (Gilks et al., 1996; Gelman et al., 2003).  Here only the main steps of the 

procedure are discussed.  These steps are shown in Figure 1.

Before executing the reconstruction procedure, the source term parameters, x, y and q are 

assigned prior distributions ( )(Sp ) based on the limited information available about the 145

release.  Each parameter’s prior distribution is bounded by a range specified from prior 

knowledge of the circumstances relevant to the problem being solved.  The width of the 

prior distribution reflects the confidence in the initial estimate of the source parameters.

Following setup, an initial value for each parameter is sampled from its prior and a 

number of iterations involving source-term sampling and dispersion simulation are150

executed until convergence to the posterior distribution is reached (See Section 2.3.2 and 



7

4.3.2 for definition and a discussion on convergence criteria).  At each iteration the 

forward run is input with a realization of S, i.e., a value for x, y and q. For each 

parameter, the values corresponding to each iteration forms a “Markov chain”, that can 

be defined as a finite number of values in which the probability of a future value depends 155

only upon the current value (Gilks et al. 1996).  Once initiated, each iteration of the 

solution procedure consists of the following four steps:

1) A new value for x is proposed (xprop) according to: dxxxprop += .

Here x is the current value and dx is the vector displacement from that value. The 160

displacement is modeled as a random-walk sampled from a Gaussian distribution 

with zero mean and a standard deviation specified from the current stepsize 

(discussed below). Hence, the prior distribution )(Sp is utilized as a target 

distribution to estimate a “prior likelihood” of xprop.  If the prior likelihood of xprop

exceeds that of x, the proposed value xprop replaces x.  If not, a random (Bernoulli) 165

“coin flip” (Section 2.2.1) determines whether the new proposal, even with its

lower prior likelihood, will be accepted. This ensures that the sampled parameters 

reflect the prior likelihood.

2) Step 1) is repeated independently for y and q.

3) The forward dispersion simulation is conducted using the current values of x, y, 170

and q.

4) The likelihood of the current values of x, y and q is evaluated by comparing the 

agreement between the predicted data, using the current source parameters, and 

observed data at the sensor locations. This new likelihood is compared to that 

resulting from the previous forward simulation. The proposed state likelihood 175

)|( SMp should not be confused with the prior likelihood as defined in step 1) 

that is based only on the prior distributions, i.e. )(Sp , without considering the 

measurements (M).  If the proposed state likelihood is higher than the likelihood 

of the previous state, it is accepted.  If not, then a random (Bernoulli) “coin flip” 

(Section 2.2.1) is used to ensure the search explores the entire posterior state 180

space.  Occasional acceptance of new proposals with lower likelihoods ensures 

that the reconstruction procedure continues to search the complete space of 
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proposed states, preventing the procedure from remaining indefinitely within the 

neighborhood of a local extrema.

185

2.2.1 The likelihood function and acceptance condition

The quality of agreement between the predicted and observed data at the sensor locations 

is expressed in terms of a likelihood function (L). The present study utilizes a likelihood 190

function of the form

( )[ ] [ ] α+
−

−=≡
∑

2

2
1010

σ2

)](log)([log
),,σ(ln|ln

N

i
ii MP

Lp MPSM (3)

where L is the likelihood function, Pi are the elements of the array P of the predicted 

values at the sensor locations, Mi are the elements of the array M of the sensor

measurements, σ is an error parameter chosen accordingly to expected errors in the 195

observations and predictions, and α is a constant.

After LODI is run with the new proposed state (i.e, a new set of x, y and q), the proposed 

state is retained if

200

( ) ( ) ( ) ( ) [ ]]1,0(lnlnlnlnln rndLLorLL propprop ≥−≥ (4)

(a) (b)

where Lprop is the likelihood value of the proposal, L is the previous likelihood value, and 

rnd(0, 1] is a random number generated from a uniform distribution in the interval (0, 1].

205

It is important to note that condition (4b) is more likely to be satisfied if the likelihood of 

the proposal is only slightly lower than the previous likelihood value. This aspect has 

important implications for improving the Bayesian event reconstruction algorithm

efficiency, as explained in the next subsection.  If large errors are expected in the 

prediction and/or measurements, large values of σ should be assumed, resulting in a 210

flatter distribution of likelihood values (as evident from equation (3)).  This in turn would 
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increase the acceptance rate induced by a positive test of (4b).  Therefore, the larger σ, 

the broader the posterior distribution. In this simulation σ = 0.8, that resulted in a 

rejection rate of approximately 80 %.

215

2.2.2 Cooling-off and adaptive step procedures

A cooling-off procedure is used (Neal, 2001) to assure at the initial stages of the sampler 

a broader exploratory sampling of the posterior distribution values.  The procedure 

consists of normalizing the log-likelihood of the proposed values with a “temperature”220

constant which decreases (“cools-off”) linearly with the number of iterations, to unity. 

Initially, the normalization of the likelihood values increases the number of times 

condition (4b) is met, since the normalization reduces the relative differences between 

different likelihood values, allowing the acceptance of less likely proposals. As the 

“temperature” is progressively decreased, the acceptance rate resulting from condition 225

(4b) decreases accordingly.  This procedure allows the Markov chain to initially include a 

broader subset of the parameter range as accepted values.  This study employed a 

cooling-off period consisting of the first one hundred iterations of each Markov chain.

An adaptive stepsize algorithm has also been implemented to ensure that the magnitude 230

of the displacement between current and proposed parameters is appropriate for the 

current stage of the search. Following Haario et al. (1999), after an initial transient 

during which the stepsize is held constant, the stepsize is computed as directly 

proportional to the variance of the values sampled up to the current iteration.  This 

approach assures in the initial stages of the search a large stepsize, because the large 235

variance of the sampled value, encouraging a broad exploration of parameter space and 

identifying high likelihood regions more efficiently than a smaller stepsize would. 

During the latter stages of a search, after the Markov chains have converged to within 

small neighborhoods of likelihood extrema, the sampled variance is smaller, and the 

resulting smaller stepsize encourages a chain to explore the contours of likelihood within 240

the neighborhood of its current extrema. It should be noted that those stepsize
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adjustments affect only the rates of convergence and do not affect the posterior 

distribution (i.e., the shape of the returned sample).

It should be emphasized that the purpose of the algorithm is not to identify likelihood 245

extrema, but to reveal the probabilistic landscape of likelihood, throughout the entire 

domain (bounded by the prior probability distributions). The combination of cooling-off 

and adaptive stepsize results in chains that explore the entire parameter space yet 

repeatedly converge to the same subset, yielding probabilistic estimates of source 

parameter values.250

2.3  Burn-in and Convergence Definitions

In this section two important aspects of the Bayesian MCMC stochastic algorithm are 

defined, the burn-in and the convergence criteria.255

2.3.1 Burn-in

The burn-in is an important phase represented by an initial subset of the total iterations 

that can be defined as follows.  It can be seen as the number of iterations needed for the 260

current parameter distribution to relax from the initial state (Gilks et al., 1996).  Burn-in 

samples are usually discarded to construct the parameters posterior distributions. Burn-in 

is further discussed in Section 4.31.

2.3.2 Convergence265

Convergence is reached in practice when more samples would not modify the resulting 

posterior distribution.  Statistically, convergence to the posterior distribution can be 

estimated by computing between-chain variance and within-chain variance (Gelman et 

al., 2003). If there are m Markov chains of length n for a source parameter S, whose 270

values are denoted by s, then we can compute between-chain variance B as
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The convergence value ( R̂ ) is given by

W
SR )var(ˆ = (9)

Where the variance of S is defined to be

B
n

W
n

nS 11)var( +
−

= (10)

The necessary condition for statistical convergence to the posterior distribution is that R̂285

approaches unity (Gelman et al., 2003). In practice, simulation should be run until R̂ is 

smaller than 1.1 or 1.2 (Gilks et al., 1996). Convergence results are discussed in Section 

4.3.2.
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3.  Algeciras Accidental Release

290

The Algeciras accident remained undetected for three days after the release and the 

source was unknown for 10 more days afterward.  On May 30, 1998, a piece of medical 

equipment containing Cesium-137 (Cs-137) was accidentally melted in one of the 

furnaces at the Acerinox stainless steel production plant near Algeciras, Spain. The 

plume of Cs-137 fallout marked the most significant nuclear contamination on the 295

European continent since the 1986 Chernobyl power plant disaster.

The release parameters are still not well known. According to Spanish Nuclear Security 

Agency (CSN) (Vogt et al., 1999, hereinafter referred as V99), the radioactivity of the 

material released was between 8 and 80 Ci (1 Ci = 3.7 x 1010 Bq) and the release 300

occurred between 0100 and 0300 UTC on 30 May.  None of the detected radioactivity 

levels were sufficient to adversely affect the human health or the environment. This 

event provides a real case to evaluate the source reconstruction methodology described in 

Section 2, on a continental scale.

305

A detailed analysis of the synoptic weather patterns at the time of the release can be 

found in V99.  Figure 2 shows qualitatively the radioactive plume transport as reproduced 

by LODI given realistic source parameters (location: 5° 26' W, 36° 10' N; release time: 

0130 UTC, May 30; release duration: 30 min.; release amount: 50 Ci).  In each panel the 

source location is indicated by the white square; white circles represent location of 310

sensors used in this study.  Initially (top-left panel) the plume was caught in a westerly 

flow that advected the radioactive cloud over the Mediterranean Sea, leaving the accident 

virtually undetected.  Between May 31 and June 1 (top-right panel) the plume shifted to 

the north and was detected by sensors located in southeast France and northwest Italy.  

After June 3, radioactivity was detected at a number of European stations; concentrations 315

were reported from 24-hour to 1-week averages (V99).
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4. Results

This section describes the details of the problem set-up and assumptions made to perform 

the simulations, followed by analysis of the results.  The goal is to demonstrate the ability 320

of the proposed method to reconstruct the source parameters for a contaminant release 

from available measurements in conditions similar to a real emergency response scenario 

occurring at the continental scale.

4.1 Simulation Set-up and Assumptions325

The first measurements of contamination from the Algeciras release (24-hour average 

concentrations of radioactive material) were obtained on June 2, three days after the 

accident. The measurement stations, located in northwest Italy and southeast France 

(approximately 1600 km northeast of the source location), are shown by the white circles 330

in Figure 3.  From June 3 to June 14 a variety of measurements (from 24-hour averages to 

1-week averages) were reported in several locations further downwind, mostly in central 

and eastern Europe.  For the present study, only the first set of available 24-hour average

measurements (17 values reported from 11 stations June 2-3) are used to reconstruct the 

unknown source. These data are chosen to evaluate the ability of the proposed 335

methodology to function in an emergency response situation, using only the first 

available data.

The sensor locations used for the source reconstruction simulation cover a very small 

portion of the European continent (Figure 3). The compact area covered by the 340

measurements presents a challenge to the reconstruction algorithm, as source parameters 

that are displaced relatively small distances from the true source may not encounter the 
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sensors at all. Adding to this difficulty is the absence of “zero” concentration readings. 

Concentrations near the threshold detection levels of the instruments were not reported, 

rather than being reported as “zero” readings. Zero concentration readings are useful 345

information for the algorithm, information that is lost when the locations fail to report 

those values.  Such data likely would aid the reconstruction algorithm.

The source geometry (surface point source) and duration (between 0130 and 0200 UTC 

on May 30, 1998, as in V99) were assumed known.  CSN reported the released to have 350

happened between 0100 and 0300 UTC on May 30.

The meteorological data used to drive the dispersion model LODI was provided by the 

National Centers for Environmental Protection Aviation model (AVN) (Kanamitsu et al., 

1991). The 6-hour AVN analysis fields at 1-degree horizontal spatial resolution were 355

used as input for the Atmospheric Data Assimilation Parameterization Techniques 

(ADAPT) model (Sugiyama and Chan, 1998), which generated the 6-hourly spaced 

meteorological fields at 22-km horizontal resolution input to LODI. Qualitatively this

meteorological field was in fair agreement with the observed flow, particularly over the 

Mediterranean Sea where the plume traveled before hitting the sensors. The dispersion 360

simulation was conducted using 100 000 marker particles – a number sufficient to 

provide statistical resolution for this case.

The prior distribution of the source location is indicated by the dashed box in Figure 3. 

This domain (about 1800 km in the east-west direction and 3600 km in the north-south 365

direction) was selected based on the predominantly westerly flow pattern over most of 

the sensor locations from May 30 (the day of the accident) through June 2 (when the first 

measurements were available) which implied that the source must have been located to 

the west of the sensors (western Europe or northwestern Africa). Further, given the wind 

speeds during the period, locations within 1800 km to the west would likely have passed 370

beyond the sensors by the beginning of June 2.  The meridional extent of the prior 

reflects similar confidence in potential values of the source latitude. Initially, each 

location within this box was given approximately the same probability to be sampled, 
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with the x and y values generated from two Gaussian distributions with mean values 

taken to be the box center coordinates and standard deviations equal to the box dimension 375

in the east-west direction.

4.2 Source Reconstruction

The stochastic engine was run with three independent Markov chains.  For a given 380

number of sampled values, a higher number of chains would produce the same number of 

samples more rapidly, if a large cluster is available to run the independent chains all at 

the same time.  Additional comments on the computational costs of the procedure can be 

found at the end of Section 5.

385

Figure 3 depicts the locations explored by the three Markov chains.  Given the 

assumption of a surface point source, the chains were allowed to explore only values at 

the surface.  The gray dots represent accepted states during the burn-in phase (first 500 

iterations, as defined in Section 2.3.1 and discussed in Section 4.3.1), whereas the black 

dots represent those states accepted afterwards.  The chains efficiently explore the given 390

sampling box, assuring the construction of a posterior distribution for the sampled 

parameters likely to include all of the dominant modes.

Figure 4 shows an expanded view of the region including the locations of the states 

accepted after burn-in.  Different symbols (circle, five-point star, and triangle) represent 395

the three chains.  The posterior distribution reveals two distinct modes of high relative 

probability indicating likely source locations; one over land within 60 km north of the 

real source location (white square), and one over the Mediterranean Sea about 80 km 

west and 20 km south of Algeciras.  The Markov chains sample both within and between 

the two modes providing evidence of chain convergence (as defined in Section 2.3.2 and 400

discussed in Section 4.3.2).

The probabilistic aspect of the answer provides a useful tool for a real emergency-

response scenario.  The algorithm finds among all the possible solutions the few ones that 
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are more consistent with the data available and its uncertainties. The information in 405

Figure 4 provides guidance for decision makers formulating an appropriate strategy.  It

would have suggested looking for potential source locations (e.g., steel mill) just north of 

Algeciras, and this would have led to rapid identification of the real source.  Moreover, 

the mode downwind of Algeciras would have prompted first searching for possible ships 

or any other floating or submerged body releasing radioactive material in that localized 410

stretch of waters. The posterior distribution in Figure 4 could also be used to construct an 

updated prior for a more detailed search. Repeated application of such an approach could 

yield successively more precise source location information.

Figure 5 shows contours of location probabilities based on the accepted states spatial 415

distribution showed in Figure 4.  Also shown in Figure 5 are the surface wind fields 

driving LODI at the time of the release.  The probability distributions clearly show the 

location of the two modes of high relative probability and likewise indicate how the 

distributions are influenced by changes in the wind field.  For instance the distributions 

are stretched in approximately the along-wind direction, and the amount of the stretching 420

is roughly proportional to the wind speed.

One explanation for this feature is the following.  Measurements that are averaged over a 

given time interval are relatively insensitive to the plume’s exact arrival and transit time, 

provided that the majority of the plume passes over the sensors within the given 425

averaging interval. Since the flow pattern formed an arc between Algeciras and the 

sensors that was nearly stationary, sources spread over as much as 100 km along the 

streamline represented by the arc would have produced very similar 24-hour averaged 

predictions at the sensor locations.  In fact, the along-wind length of the distribution

shown in Figures 4-5 is roughly the distance a parcel would traversed given the model430

wind speed in 24 hours.  Similar features in the posterior distributions for source location 

have been observed in studies utilizing similar inversion algorithms (although applied at 

much smaller spatial scales) where similar explanations hold (Lundquist et al., 2005;

Chow et al., 2006).

435
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More insights about the methodology performance can be inferred from Figures 6-8.  

Figure 6 shows the surface location (x and y) and the release rate (q) values versus the 

iteration number.  The range adopted in each panel for the vertical axes reflect the actual 

ranges spanned by the sampler.  In the top and central panel the horizontal grey line 

represents the true value of the source location coordinates, whereas the two horizontal 440

grey lines in the bottom panel show the range of the true source emission, as reported by 

CSN. In each panel, there are three black lines representing the values the Markov chains 

assume during the iterations. 

The first 100 iterations show the effect of the cooling-off procedure.  Initially the chains 445

span a wide portion of the given range for each parameter, but the acceptance rate 

decreases as the temperature linearly decreases with the iteration number.  After 100 

iterations, the chain values span only a limited subset of the possible range constrained by 

the likelihood of the proposed values as explained in Section 2.2.2.

450

The effects of the adaptive step procedure are less apparent than the cooling-off, but they 

can be noticed in the top and bottom panel of Figure 6.  After the cooling-off period (i.e., 

after iteration 100), the values of x or q have a tendency to slowly change.  This causes

the variance of the iteration series to rapidly diminish, that in turn results in a decrease of 

the stepsize for subsequent sampling (Section 2.2.2).  With a smaller stepsize, the 455

Bayesian event reconstruction algorithm proposes states with higher likelihood that are 

more frequently accepted (approximately between iterations 200-250) than for the 

previous iterations (between 100-200).  Without the implementation of the adaptive step

procedure, the proposed states’ rejection rate would have been inefficiently high, 

requiring a much higher number of iterations to collect the same number of samples than460

when the adaptive step procedure is adopted.

As the Markov chains in Figure 6 converge, the sampled parameter assumes the same 

values throughout consecutive iterations (horizontal black lines) with new proposed states 

or the individual proposed values (for x, y, and q) repeatedly rejected.  All of the values 465

for x (Figure 6 top panel) tend to be greater than the x-coordinate of the real source, 
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towards downwind locations.  After about 500 iterations the chains start to explore a 

small subset of the initial range, corresponding to the values with the highest likelihood 

for this parameter.  Using accepted values of x a histogram can be constructed as shown 

in the top panel of Figure 7 (vertical grey line represents the true source x-coordinate 470

value).  The majority of the values are within 100 km from the real value, with the 

dominant mode about 80 km downwind of it.

The central panel of Figure 7 shows the quality of the prediction of the y values posteriori 

distribution (vertical grey line represents the true source y-coordinate).  Two modes can 475

be recognized, just few tens of km north and south of the true source location, being the 

latter the dominant one. The y values converge faster to a much smaller subset of the 

initial range (Figure 6, central panel).  A higher rejection rate seems to apply to y as 

shown by more frequent intervals where y candidates are repeated, as compared to x.  

This behavior is due to the clustering and close spacing of the sensor locations – even a 480

small (few tens of km) deviation from the real y value towards the south or towards the 

north leads to a plume that misses the sensor locations, which in turn results in a low 

likelihood value for the proposed state.  Finally, this behavior indicates the quality of the 

meteorological field used to drive LODI.  A less accurate meteorological field would lead 

to a plume hitting the sensor locations even if released from a source not close to 485

Algeciras.

The bottom panel of Figure 6 shows the q values of the accepted states.  The ordinate is 

represented with a logarithmic scale spanning the wide range of values sampled for q

(from 1013 to 1017 μBq s-1).  There is a large uncertainty on what the real values of the 490

radioactive material released was, with values ranging from 8 to 80 Ci (1 Ci = 3.7 x 1010

Bq) as shown by the two grey lines in the panel. From Figure 6 it can be noted that q is 

the slowest parameter to reach a phase where the accepted states span only a subset of the 

provided range.  The q values also have the highest variability reflecting higher 

uncertainty than the determination of the location.495
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There is a tendency to over-predict the 8-80 Ci range.  The majority of the sampled 

values after the burn-in (defined in Section 2.3.1 and discussed in Section 4.3.1) are of

the same order of magnitude as the upper limit of 80 Ci.  There are several possible 

explanations.  The release duration assumed in these simulations (0130-0200 UTC on 500

May 30, as in V99) is within the values suggested by CSN, but if this period is too short 

the algorithm would calculate higher emission rates in order to compensate for the total 

radioactivity released.  Moreover, since the observed concentrations are 24-hour 

averages, it is extremely challenging to obtain a tight posterior distribution and a limited

number of modes for q, since these observed values could result from a variety of 505

different choices of x, y, and q. These uncertainties also affect the rapidity with which 

convergence is reached, q being the slowest converging parameter as discussed in the 

next section.

4.3 Burn-in and Convergence510

In this section two important aspects of the stochastic procedures are briefly discussed,

the burn-in phase and the convergence criteria.

4.3.1 Burn-in515

Burn-in (as defined in Section 2.3.1) has been applied to the plots shown in Figure 4 and 

7.  The burn-in phase was chosen as the first 500 iterations from a visual inspection of the 

parameter sampled values variation with the number of iterations (Figure 6) and the 

convergence criteria  ( R̂ < 1.5 in Figure 8 for all parameters). Tests with burn-in ranging 520

from the first 300 to the first 1500 iterations lead to posteriori distributions close to the 

one depicted in Figure 7 (not shown).

4.3.2 Convergence

525

Figure 8 shows the convergence values R̂ (Section 2.3.2, Equation 9) for the source 

parameter x, y and q versus the number of iterations.  After 2000 iterations the necessary 
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statistical convergence condition of R̂ < 1.2 is met for all the parameters, with y being the 

fastest parameter reaching this condition, and q the slowest.

530

Note that after the first 100 iterations (i.e., during the cooling-off procedure), all three 

parameters appear to meet the convergence condition.  Nevertheless, by visual 

examination of the parameters values versus iteration number (Figures 3 and 6) it is clear 

that convergence has not been reached after 100 iterations.  Indeed, also an expert 

judgment is needed to assess the convergence of the simulation (Gilks et al., 1996).  535

Practically, convergence is reached when is clear that more samples would not modify 

the resulting posterior distribution.
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5. Conclusions

A methodology to reconstruct a source given a set of measurements has been presented.  540

It combines Bayesian inference with Markov Chain Monte Carlo (MCMC) sampling, and 

produces posterior probability distributions of the parameters describing the unknown 

source.  The methodology has been applied for the first time to a real accidental 

radioactive release at the continental scale occurred in May 1998, near Algeciras, Spain.

545

The parameters sampled are the source location and strength.  The source duration has 

been assumed to be 0130-0200 UTC, May 28, which falls within the time interval 0100-

0300 reported by the Spanish Nuclear Security Agency (CSN) (Vogt et al., 1999). The 

release was also assumed to be a surface point source.

550

The source location is reconstructed as a roughly bimodal distribution, with modes 

located a few tens of km north of Algeciras and about 80 km downwind of the real source 

location.  The source strength is represented by a wider posterior distribution (reflecting 

the higher uncertainty of this parameter with respect to the source location) with a 

tendency of the Bayesian MCMC algorithm to over-predict the reported source strength.  555

The majority of the sampled values of this parameter have the same order of magnitude 

of the estimated release.  The over-prediction can be caused by the assumption of a 

shorter duration than in the real release.

The probabilistic aspect of the solution optimally combines a likely answer with the 560

uncertainties of the available data.  From several possible solutions, the Bayesian event 

reconstruction algorithm is able to find only the few ones that are more consistent with 

the data available and its uncertainties.  The source reconstruction performed in this study 

would have provided a decision maker with accurate information about the accident, soon 

after the first measurements were available.  This would have led to timely and efficient 565

actions to preserve the public health, in case of harmful radioactive material 

concentrations were released.  Moreover, the results presented show that the 
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methodology have skills even with a limited number of observations available with a 

coarse time resolution (24-hour averages).

570

To demonstrate the efficiency of the methodology presented the stochastic engine has 

been run with three Markov chains.  Each Markov chain can be run independently at the 

same time.  Moreover, each chain can be run in parallel on multiple processors.  By using 

30 chains the same results can be obtained in less than six hours machine time.  This 

could be accomplished by independently running the chains over a cluster with less than 575

a thousand processors, each having a 2.4 GHz CPU speed.  Furthermore, no effort has 

been done here to improve the efficiency and to reduce the computational load per 

Markov Chain.

The uncertainties in the meteorology directly affect the quality of the source 580

reconstruction.  Both the mean and turbulent components of the wind strongly affect the 

performance of the dispersion model and the quality of the predicted concentrations.  

These uncertainties could be taken into account by combining Bayesian inference and 

MCMC sampling with ensemble techniques, an approach widely used in the weather 

forecast community (e.g., Palmer and Hagedorn, 2006), that will be considered for future 585

applications.  Future work will also focus on algorithm optimizations to improve its 

efficiency and to reduce the overall computational cost.  Finally, future tests will also 

include other parameters in the sampling process, e.g., the source release time and 

duration, to replicate closely real-time emergency response scenarios.
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Figure Captions

Figure 1.  Flow diagram of the algorithm.660

Figure 2. Qualitative illustration of the plume fate the four days following the release 

(May 30 – June 3, 1998), as simulated with the Lagrangian Operational 

Dispersion Integrator (LODI) model. The white square represents the real 

source location (5° 26' W, 36° 10' N), whereas the filled white circles are the 

sensors locations. Contoured concentrations are 24-hour averages.665

Figure 3. Proposed state locations accepted. The dashed box is the starting sampling 

area, provided as input (i.e., the location prior distribution), covering western 

Europe and northwestern Africa.  The grey dots are the pre burn-in states

(iterations 1-500), while the black dots represent the post burn-in states

(iterations > 500). White square and circles as in Figure 2.670

Figure 4. Figure 3 zoom-in nearby the real-source location.  Each point represents an 

accepted state post burn-in (iterations > 500), where different symbols (circle, 

five-point star, and triangle) correspond to different chains.

Figure 5. Location probability spatial distribution build with post burn-in (iterations > 

500) accepted states.675

Figure 6.  The three chains values versus the number of iterations, for x (km), y (km) and 

q (μBq s-1) (black lines).  Values of q are reported on a logarithmic scale.  

Horizontal grey lines represent the true values of x and y in the top and central 

panel, respectively.  The two horizontal grey lines in the bottom panel are the 

estimated likely range of the source strength (accordingly to the Spanish 680

Nuclear Security Agency, Vogt et al. (1999)).

Figure 7. Posterior distribution as inferred by the Bayesian event reconstruction 

algorithm for x (km), y (km) and log(q) (log(μBq s-1)).  Vertical grey lines 

represent the true values for x and y (top two panels) and the reported 685

(accordingly to the Spanish Nuclear Security Agency, Vogt et al. (1999)) 

range for q (bottom panel).
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Figure 8.  Convergence values versus the number of iterations for x (dashed line), y (dot-

dashed line), and q (solid line).690
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Abstract

The ability to determine the source of a contaminant plume in urban environ-

ments is crucial for emergency response applications. Locating the source and de-

termining its strength based on downwind concentration measurements, however,

is complicated by the presence of buildings which can divert flow in unexpected

directions. High-resolution flow simulations are now possible for predicting plume

evolution in complex urban geometries, where contaminant dispersion is affected

by the flow around individual buildings. Using Bayesian inference via stochastic

sampling algorithms with a high-resolution CFD model, we can reconstruct an at-

mospheric release event to determine the plume source and release rate based on

point measurements of concentration.

Event reconstruction algorithms are applied first for flow around a prototype

isolated building (a cube), and then using observations and flow conditions from

Oklahoma City during the Joint URBAN 2003 field campaign. Stochastic sampling
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methods (Markov Chain Monte Carlo) are used to extract likely source parame-

ters, taking into consideration measurement and forward model errors. In all cases

the steady-state flow field generated by a 3D Navier-Stokes finite-element code

(FEM3MP) is used to drive thousands of forward dispersion simulations. To en-

hance computational performance in the inversion procedure, a reusable database

of dispersion simulation results is created. We are able to successfully invert the dis-

persion problems to determine the source location and release rate to within narrow

confidence intervals even with such complex geometries.

Our stochastic methodology is general and can be used for time-varying release

rates and reactive flow conditions. The results of inversion indicate the probability

of a source being found at a particular location with a particular release rate, thus

inherently reflecting uncertainty in observed data or the lack of enough data in

the shape and size of the probability distribution. A composite plume showing

concentrations at the desired confidence level can also be constructed using the

realizations from the reconstructed probability distribution. This can be used by

emergency responders as a tool to determine the likelihood of concentration at a

particular location being above or below a threshold value.

Key words: Bayesian inference, computational fluid dynamics, Markov-Chain

Monte Carlo, inverse problem, urban dispersion
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1 Introduction and background1

Flow in urban environments is complicated by the presence of buildings, which divert the2

flow into often unexpected directions. Contaminants released at ground level are easily lofted3

above tall (∼ 100 m) buildings and channeled through urban canyons that are perpendicular4

to the wind direction (see e.g., IOP 9 in Chan and Leach, 2007). The path of wind and scalars5

in urban environments is difficult to predict even with building-resolving computational fluid6

dynamics codes, due to the uncertainty in the synoptic wind and boundary conditions and7

errors in parameterizations of different physical processes such as turbulence.8

Given the difficulties due to the complexity of urban flows, solving an inverse problem is quite9

challenging. That is, given measurements of concentration at sensors scattered throughout a10

city, is it possible to detect the source and strength of a contaminant release, and if so, can the11

uncertainty in source characteristics be estimated? The ability to determine source location12

and strength in a complex environment is necessary for emergency response for accidental or13

intentional releases of contaminants in densely-populated urban areas. The goal of this work14

is to demonstrate a robust statistical inversion procedure that performs well even under the15

complex flow conditions and uncertainty present in urban environments.16

Much work has previously focused on direct inversion procedures, where an inverse solu-17

tion is obtained using an adjoint advection-diffusion equation. The exact direct inversion18

approaches are strictly limited to processes governed by linear equations and also generally19

assume the system is steady-state (Enting, 2002; Keats et al., 2007). In addition to adjoint20

models, optimization techniques are also employed to obtain solutions to inverse problems.21

These techniques often give only a single best answer, or assume a Gaussian distribution to22

account for uncertainties. General dispersion related inverse problems, however, often include23

non-linear processes (e.g., dispersion of chemically reacting substances) or are characterized24

3



by non-Gaussian probability distributions (Bennett, 2002). Traditional methods also have25

particular weaknesses for sparse, poorly-constrained data problems, as well as in the case of26

high-volume, potentially over-constrained and diverse data streams.27

We have developed a more general and powerful inverse methodology based on Bayesian in-28

ference coupled with stochastic sampling (Chow et al., 2006). Bayesian methods reformulate29

the inverse problem into a solution based on efficient sampling of an ensemble of predictive30

simulations, guided by statistical comparisons with observed data (see e.g. Ramirez et al.,31

2005). Predicted values from simulations are used to estimate the likelihoods of available32

measurements; these likelihoods in turn are used to improve the estimates of the unknown33

input parameters. Bayesian methods impose no restrictions on the types of models or data34

that can be used. Thus, highly non-linear systems and disparate types of concentration,35

meteorological and other data can be simultaneously incorporated into an analysis.36

In this work we have implemented stochastic models based on Markov Chain Monte Carlo37

sampling for use with a high-resolution building-resolving computational fluid dynamics38

code, FEM3MP. The inversion procedure is first applied to flow around an isolated building39

(a cube) and then to flow in Oklahoma City (OKC) using data collected from SF6 tracer gas40

releases during the Joint URBAN 2003 field experiment (Allwine, 2004). While we consider41

steady-state flows in this first demonstration, the approach used is entirely general and is also42

capable of dealing with unsteady, nonlinear governing equations. Our stochastic approach43

has been applied to other dispersion cases (Delle Monache et al., 2007), but never before to44

urban environments as done here.45
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2 Reconstruction procedure46

2.1 Bayesian inference and Markov Chain Monte Carlo47

The inversion or reconstruction algorithm uses Bayes’ theorem combined with a Markov48

Chain Monte Carlo (MCMC) approach for stochastic sampling of unknown parameters (see49

e.g., Gelman et al., 2003). A brief description is given here; more details can be found in50

Johannesson et al. (2004, 2005). Bayes theorem is written51

p(M |D) =
p(D|M)p(M)

p(D)
∝ p(D|M)p(M) (1)52

where M represents possible model configurations or parameters and D is observed data.53

For our application, Bayes theorem therefore describes the conditional probability (p(M |D))54

of certain source parameters (the model configuration, M , including e.g. source location and55

release rate) given observed measurements of concentration at sensor locations (D). This56

conditional probability p(M |D) is also known as the posterior distribution and is related to57

p(D|M), the probability of the data conforming to a given model configuration, and p(M),58

the possible model configurations before taking into account the measurements. p(D|M),59

for fixed D, is called the likelihood function, while p(M) is the prior distribution. In this60

application, we assume at the outset that the source could be located anywhere in the whole61

domain, so the prior distribution is uniform over the chosen domain. The probability p(D)62

distribution is called the prior predictive distribution (Gelman et al., 2003) and represents a63

marginal distribution of D. p(D) is a normalizing factor and is not needed when computing64

the posterior distribution. For a general problem where analytical solutions are not possible,65

the challenge lies in computing the likelihood function. For that purpose we use a stochastic66

sampling procedure and approximate the posterior distribution (p(M |D)) by the empirical67

distribution function described below.68
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2.2 Sampling procedure69

We use a Markov Chain Monte Carlo (MCMC) procedure with the Metropolis-Hastings70

algorithm to obtain the posterior distribution of the source term parameters given the con-71

centration measurements at sensor locations (Gelman et al., 2003; Gilks et al., 1996). We72

thus completely replace the Bayesian formulation with a stochastic sampling procedure to73

explore the model parameter space and obtain a probability distribution for the source lo-74

cation and strength. The Markov chains are initialized by taking samples from the prior75

distribution. To lower the computational cost, we limit the prior distribution to the ground76

surface (thus ignoring the possibility of elevated sources). All grid cells associated with the77

footprints of buildings are also excluded from the prior distribution for the Oklahoma City78

runs.79

A forward dispersion calculation is first performed to provide the initial data for comparison80

with observed data at sensors at the initial locations of the Markov chains. Each Markov chain81

path is determined using the Metropolis-Hastings algorithm at each step (Delle Monache82

et al., 2007, see their Fig. 1). A sample is taken from a specified Gaussian proposal distribu-83

tion centered at the current chain location and likewise from a Gaussian proposal distribution84

for the source strength. A forward calculation is performed for the proposal with these new85

parameters and results are compared to measurements at the concentration sensors. If the86

comparison is more favorable than the previous chain location, the proposal is accepted, and87

the Markov chain advances to the new location. If the comparison is worse, the proposal is88

not automatically rejected. Instead, a Bernoulli random variable (a “coin flip”) is used to de-89

cide whether or not to accept the new state. This random component is important because it90

prevents the chain from becoming trapped in a local minimum where comparisons are more91

favorable than values in the local sampling area but where the chain has not converged on92

the true source location or release rate.93
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A log likelihood function is used to quantify the agreement between the model configuration94

and the data; it is defined as95

ln(L(M)) = −

N
∑

i

(CM
i − CE

i )2

2σ2

rel

(2)96

where CM
i are model values at the sensor locations, CE

i are the experimentally observed97

sensor values, and σrel is the standard deviation of the combined forward model and mea-98

surement errors. The squared difference is summed over the N sensor locations. In this work,99

the logarithm of the model and data values is taken before using this formula. This prevents100

large concentration values from dominating the likelihood calculation when the range of con-101

centrations spreads over several orders of magnitude. The likelihood function is calculated102

as the forward model for each proposed new state (sample x,y, and q values) is computed.103

As described above, the proposed state is accepted if either104

ln(Lprop) ≥ ln(L) or Lprop/L ≥ rnd(0, 1] (3)105

where ln(Lprop) is the log likelihood of the proposed state, ln(L) is the previous likelihood106

value, and rnd denotes a random number generated from a uniform distribution to represent107

the “coin flip”.108

The posterior probability distribution in Eq. 1 is computed discretely from the resulting109

Markov chain paths defined by the algorithm described above and is estimated with110

p(M |D) =
n

∑

i=1

(1/n)δ(Mi − M) (4)111

which represents the probability of a particular model configuration (M , including param-112

eters such as source location and strength) giving results that match the observations at113

sensor locations (D). Equation (4) is a sum over the entire Markov chain of length n of all114

the sampled values Mi which fall within a certain “bin”. Thus δ(Mi−M) = 1 when Mi = M115
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and 0 otherwise. If a Markov chain spends several iterations at the same location, meaning116

that multiple proposals were rejected because the given location was more favorable than117

the proposals, the value of p(M |D) increases through the summation in Eq. (4), indicating118

a higher probability for those source parameters.119

Multiple chains are used (typically four) to allow for better statistical sampling of the param-120

eter space and to enable convergence monitoring (thus Eq. (4) is overly simplified). Statistical121

convergence to the posterior distribution is monitored by computing between-chain variance122

and within-chain variance (Gelman et al., 2003). If there are m Markov chains of length n123

then we can compute between-chain variance B with124

B =
n

m − 1

m
∑

j=1

(M j − M)2 (5)125

where126

M j =
1

n

n
∑

i=1

Mij (6)127

is the average value along each Markov chain (a sample from a given chain is denoted by128

Mij) and129

M =
1

m

m
∑

j=1

M j (7)130

is the average of the values from all Markov chains. The within-chain variance W is131

W =
1

m

m
∑

i=1

s2

i (8)132

where133

s2

i =
1

n − 1

n
∑

j=1

(Mij − M i)
2 . (9)134
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An estimate of the variance of M is computed as135

var(M) =
n − 1

n
W +

1

n
B (10)136

The convergence parameter, R, is then computed as137

R =
var(M)

W
. (11)138

The necessary condition for statistical convergence to the posterior distribution is that R139

approaches unity (Gelman et al., 2003). In practice, this is not always a sufficient condition140

for convergence, as seen below and in other studies (Delle Monache et al., 2007).141

2.3 Source strength scaling142

Typically the MCMC sampling requires thousands of iterations (samples) to converge to the143

posterior distribution, thus requiring thousands of forward dispersion model calculations.144

With simple Gaussian puff models (Johannesson et al., 2004) or Lagrangian particle track-145

ing (Delle Monache et al., 2007) it is possible to calculate the forward models on the fly.146

With a three-dimensional CFD model, the computational cost quickly becomes prohibitive147

even for the simplest cases. For the current applications, we have simplified the situation148

for demonstration purposes by considering only steady-state flow conditions. (The chosen149

methodology remains completely general and can handle unsteady and reactive flows.) By150

assuming that the advection-diffusion problem is linear (e.g., no chemical reactions) we can151

use the precomputed steady flow field and Green’s funcions to carry out one forward sim-152

ulation at each of the thousands of locations in our prior distribution using a unit source153

strength and storing the resulting values at the sensor locations in a database. The source154

is modeled as a steady flux from one surface grid element. The stored concentrations can be155

rescaled depending on the proposed source release rate for a particular source location. Thus,156
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during the inversion process, the sampled x and y locations are mapped to the corresponding157

grid element and dispersion results from each possible source location are obtained from the158

database and rescaled according to the current sampled value for the source strength. In this159

way, 20 000 iterations for each of four Markov chains can be performed in about ten minutes160

of computational time on four Xeon 2.4 GHz processors.161

2.4 Forward model description - FEM3MP162

The stochastic inversion procedure relies on a forward model to calculate instances of pre-163

dicted sensor measurements, D, for given source term parameters, M . Here we use FEM3MP164

(Gresho and Chan, 1998; Chan and Stevens, 2000), a three-dimensional, incompressible165

Navier-Stokes finite-element code able to represent complex geometries and simulate flows166

in urban environments (Chan and Leach, 2004, 2007). Here FEM3MP is used in a Reynolds-167

Averaged Navier-Stokes approach.168

For the example of flow around an isolated building, the model is driven by a steady logarith-169

mic inflow profile at the upstream (west) boundary. Natural (i.e. zero tangential and normal170

stress) outflow boundary conditions are applied at the other boundaries. The steady-state171

flow field is pre-computed and is used to drive dispersion from a source with a constant re-172

lease rate until a steady-state concentration field is obtained. The grid resolution is uniform173

far from the building, and is doubly fine near the corners of the building (see Fig. 6 later).174

For the Oklahoma City simulations, we use setups similar to Chan and Leach (2007) for175

the third and ninth intensive observing periods (IOP3 and IOP9) from Joint URBAN 2003.176

Again, the flow field is assumed steady, with a logarithmic inflow profile on the southern177

and western boundary for IOP3 and on the southern boundary for IOP9. The wind speed178

is set to 6.5 m/s at z = 50 m with a wind direction of 185◦ (south-southwest) for IOP3179
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and similarly 7.2 m/s and 180◦ (south) for IOP9. The inflow profiles are based on upwind180

field observations near the computational domain (Chan and Leach, 2007). The flow field181

is pre-computed using FEM3MP. The release rate is constant (0.005 kg/s for IOP3 and182

0.002 kg/s for IOP9) and simulations are performed until steady-state concentration fields183

are achieved (after about 10 minutes of simulation time). The atmosphere is assumed to184

be neutrally stratified since shear production of turbulence due to buildings is significantly185

larger than buoyant production (Lundquist and Chan, 2007). A standard eddy viscosity186

RANS turbulence model was used for IOP3, and a non-linear model was used for IOP9187

(Chan and Leach, 2007). Buildings near the source are explicitly resolved, i.e., velocities188

and concentration within the buildings are set equal to zero. Far from the source, “virtual189

buildings” are used to reduce the computational cost. In this region, a drag force of very190

large value is added to the momentum equations for grid cells falling within the building191

boundaries. Previous work has shown that this approach produces satisfactory dispersion192

estimates far from the source (Chan and Leach, 2007).193

3 Isolated building example194

We have developed a prototype example of event reconstruction for a flow around an isolated195

building (a cube) with a source located upwind from the building (see Fig. 1). Four sensors196

are placed in a diamond-shaped array in the lee of the building. Data at the sensor locations197

is collected using a forward simulation from the true source location. The data is thus198

“synthetic” and used in this case only to test the inversion algorithm. Artificial measurement199

error with a standard log-normal distribution is also added to the synthetic data (in this200

case with mean µ = 0 and standard deviation σrel = 0.05).201

The source release rate was set to 0.1 (nondimensional units). As can be seen from Fig. 1 the202

actual source is located just above the symmetry line. Because the symmetry line is also the203

11



separatrix of this flow, this small deviation of the source location from the line of symmetry204

results in significant asymmetry in the resulting plume (Fig. 1). This example, while simple205

in geometry, thus incorporates complexities due to its three-dimensional nature that were206

not accounted for in previous inversion studies. The asymmetry of the plume is generated207

purely by the presence of the building. More simplistic dispersion models do not explicitly208

resolve buildings and hence cannot capture such features (Britter and Hanna, 2003).209

The domain is discretized using about 19 000 elements (42×32×14). Forward runs are com-210

puted for all possible locations (on z = 0) and concentrations values at the sensors are stored211

in a database for each grid location. Total computation time for generation of the database212

was 6 hours using 64 2.4 GHz Xeon processors. The reconstruction or inversion algorithm213

proceeds as usual, but instead of running a new simulation for each proposed Markov chain214

step, the results are drawn from the concentration database, as described previously. This215

avoids repeated computations of releases at the same x, y locations by simply scaling the216

release rate as dictated by the sampling algorithm.217

3.1 Source inversion218

Figure 2 shows the points sampled by the four Markov chains. The chains quickly converge219

on the source location, sampling more frequently in the northern half of the domain as220

expected due to the asymmetry of the actual plume. The probability distribution for the221

source location is given in Fig. 3, which also reflects the asymmetry of flow. The peak222

of the distribution occurs just upwind of the actual source location. If the error from the223

measurements is set to zero (i.e. σrel = 0), the inversion procedure accurately predicts the224

source location as expected (i.e. the peak of the probability distribution matches the true225

source; not shown). The probability distribution is constructed using the second half of the226

MCMC iterations (i.e. 10 000 to 20 000), to allow the Markov chains to “mix” adequately227
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to improve the statistical distribution and to exclude the random initialization from the228

final statistics. Thus, the so-called “burn-in” time is 10 000 iterations. The corresponding229

probability distribution for the source release rate is shown in Fig. 4. The peak of the230

histogram coincides with the actual release rate of 0.1.231

Convergence rates for the x, y and q inversions are shown in Fig. 5. All convergence measures232

reach a value near 1.1 after about 10 000 iterations, indicating that the sampling procedure233

was thorough and adequate to generate a meaningful posterior probability distribution. Note234

that the convergence rate is independent of the spread in the distribution, and merely indi-235

cates that further sampling will not likely change the results. We are thus able to successfully236

invert this idealized three-dimensional dispersion problem and determine the source location237

and release rate to within a tight confidence region.238

3.2 Composite plume239

In addition to probabilistic predictions of the source location, emergency responders need240

predictions of concentrations over the entire plume area. A “most likely plume” could easily241

be constructed by performing a forward simulation from the peak of the probability distribu-242

tion for the source location. This, however, would be one realization and would not contain243

the probabilistic information inherent in the reconstruction procedure.244

We therefore construct a probabilistic, composite plume, from the plume realizations cor-245

responding to all the samples from the posterior probability distribution of source term246

parameters. The composite plume is obtained by first creating histograms of concentration247

values at each spatial location in the domain using results from all iterations beyond the248

“burn-in” time. This step is followed by determining the concentration value at each loca-249

tion for which a certain pre-specified probability is exceeded. Contours of the 90% confidence250
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interval are shown in Fig. 6. For values above the threshold (chosen to be 0.03), the plot251

shows 90% confidence that the concentration at a given location is higher than the con-252

toured value. For values below the threshold, the contours indicate 90% confidence that the253

concentration is less than the contoured value.254

The shape of this composite plume is quite different from that of the actual plume (Fig. 1).255

The composite plume represents a probabilistic estimate of concentrations and could aid in256

emergency response decisions for evacuation or sheltering in place depending on a chosen257

confidence interval and whether an area lies above or below a threshold value for toxicity.258

4 Oklahoma City - Joint URBAN 2003 IOP3259

The OKC domain for IOP3 includes the central business district, with a maximum building260

height of 120 m and an average building height of 30 m. Figure 7 shows the complexity of261

the wind flow in the downtown area during IOP3 generated using FEM3MP with steady262

inflow boundary conditions on the southern and western edges of the domain. Comparisons263

of dispersion results are made to 30-min averages of concentration measured at fifteen sensors264

within this domain. The domain is discretized using about 580 000 elements (132,146,30)265

covering a region of approximately x = [−260, 346], y = [−68, 590]. The prior distribution is266

limited to a somewhat smaller domain (x = [−150, 130], y = [80, 410]) to reduce computation267

time. The source strength was allowed to vary from 0.00001 to 1.0 kg/s with a mean of 0.5268

and standard deviation qσ = 0.5. Standard deviations for the location sampling were set to269

xσ = yσ = 100 m with means near the center of the sample domain at x = 0 m and y = 80270

m. Standard deviations for source location and strength were determined by the problem271

domain size and refined with a trial and error procedure to ensure that the Markov chains272

had access to realistic ranges with minimal occurrences of “stuck” chains. Stuck chains can273

occur when the standard deviations chosen for the next iteration lead to a large number of274
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rejected samples such that the chain remains in a given position for many iterations.275

In addition, the cell spacing was effectively doubled by only considering sources in every276

other grid cell in a checkerboard pattern. Total computation time for 2560 forward runs277

(from each possible source location in the concentration database) was over 12 hours using278

1024 2.4 GHz Xeon processors (equivalent to 17 days on 32 processors). Each forward run279

of FEM3MP simulataneously calculated 20 different source locations, requiring 128 different280

launches of the model. Each instance of the model used 32 processors. After generation of281

the database, the inversion process itself requires less than ten minutes of computation time282

on four processors.283

4.1 Source inversion284

Figure 8 shows the location of the buildings and 15 sensors in the downtown OKC area,285

together with four Markov chain paths. The chains quickly converge from four random initial286

locations to the general vicinity of the actual source location where they spend the remainder287

of their time sampling the parameter space and refining the probability distribution. Using288

the Markov chain paths, we construct the probability distribution for the source location,289

as shown in Fig. 9. The peak of the distribution is located approximately 70 meters south290

of the actual source location. Reasons for this will be discussed below. The accompanying291

release rate histogram is given in Fig. 10. The peak of the distributions falls near 0.001 kg/s,292

while the actual source strength was 0.005 kg/s.293

Figure 11 shows convergence rates for x, y and q during the 20 000 iterations of the inversion294

procedure for OKC IOP3. The values for x, y and q converge after 10 000 iterations and295

only change slightly after that. The value for y is sometimes more difficult to pinpoint in the296

inversion process. Here y is the stream-wise direction, where a change in the distance to the297
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source can sometimes be accommodated by a corresponding change in release rate. That is,298

a weaker source closer the sensor can sometimes produce similar results to a stronger source299

further away. Therefore, a value of R = 2 for the y location of the source can be considered300

acceptable.301

A closer look at the individual plumes predicted by different source locations gives insight302

into the location of the peak of the x, y probability distribution. Figure 12 shows the plume303

predicted by FEM3MP for a source at the actual source location for IOP3 with the actual304

release rate. Contours of concentrations predicted by FEM3MP are shown together with305

small squares at the sensor locations colored according to the 30-min averaged observed306

concentrations during IOP3. Figure 13 shows the plume from the inverted source location,307

i.e. the peak of the x, y probability distribution for the source location. While the plumes308

predicted by the code seem reasonable, there are clearly discrepancies between the predicted309

concentrations and observations for both simulated plumes. These can be seen more clearly310

in a comparison of observed and modeled values at the 15 sensor concentrations. The inverted311

source location was determined by the stochastic inversion algorithm which minimizes the312

absolute error between modeled and observed values. Indeed, the sum of the absolute errors313

(Fig. 14) at the sensor locations is smaller using the inverted source location (∼ 986 ppb314

total) than the true source location (∼ 2733 ppb total). A discussion of model errors is given315

below.316

4.2 Composite plume317

We again construct a probabilistic, composite plume, representing the probability of concen-318

tration at a specific location being higher or lower than a certain value. Contours of the 90%319

confidence interval are shown in Fig. 15 with the threshold chosen at 10 ppb. Again we note320

that the shape of this composite plume is quite different from any individual realization or321
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plume prediction such as those shown in Figs. 12 and 13. The white region indicates a lack322

of information and the inability to specify a 90% confidence interval at those locations (this323

region is dependent on the choice of the threshold value). The dark blue region envelopes the324

composite plume, indicating regions where there is 90% confidence that the concentrations325

are less than 0.01 ppb.326

4.3 Treatment of model errors327

The inversion procedure clearly relies heavily on the accuracy of the sensor measurements328

as well as the accuracy of the forward model used for dispersion simulations. While the329

FEM3MP code has been validated for many urban flows, there are several possible sources330

of error. To obtain a good probabilistic distribution for the source location and strength, all331

sources of error must be included a priori.332

There are several reasons for the mismatch in predicted and observed concentrations. First of333

all, most of the observed concentrations are averaged values from a 30-min release, whereas334

model predictions are steady-state results. Additionally, there are uncertainties in the lateral335

boundary conditions prescribed in the simulation. Steady inflow has been specified for the in-336

flow boundary, whereas in reality the wind at the domain boundary has fluctuations in space337

and time. A slight change in mean wind direction can greatly affect dispersion results. Chan338

and Leach (2004) demonstrated that time-varying inflow boundary conditions significantly339

changed the concentration plume in simulations of dispersion in Salt Lake City. In addition,340

to save computation time, the domain size used for the IOP3 simulations is smaller than for341

those performed by Chan and Leach (2007) for OKC, which perhaps increases the influence342

of the boundaries. We also use a simplified linear eddy-viscosity turbulence model for com-343

putational cost reasons, whereas Chan and Leach (2007) used a non-linear eddy-viscosity344

model which gives better agreement with the data but at a much higher computational cost.345
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The non-linear eddy-viscosity model often better represents dispersion in regions of building-346

induced turbulence, hence giving better agreement with observed concentrations as in Chan347

and Leach (2007). This eddy-viscosity model is used for IOP9 below.348

Another potential source of error is in the specification of the source term in the simulation.349

While the tracer gas was released from a point source in the experiment, the model distributes350

the source over a grid cell, where the vertical injection velocity and concentration are specified351

at the boundary to match the release rate from the experiment. This yields a nearly steady352

concentration flux over the grid cell but with numerical oscillations (see region near the353

source in Fig. 12) in the neighboring cells due to the strong concentration gradients and354

insufficient grid resolution in the source area.355

It is difficult to quantify the individual contributions of the multiple sources of error in356

FEM3MP. Model errors are therefore incorporated into the inversion process in a simple,357

lump sum fashion by adjusting σrel of the standard log-normal distribution, the relative error358

allowed in the comparison between different realizations of the simulation and the observed359

values. For the OKC simulations, σrel was set to the relatively high value of 0.5.360

5 Oklahoma City - Joint URBAN 2003 IOP 9361

As a further example of the building-resolving inversion procedure, we have also applied362

the source inversion to observations obtained during IOP9. The IOP9 simulations use the363

full-sized domain as well as the more sophisticated three-equation non-linear eddy viscosity364

closure of Chan and Leach (2007) to eliminate the modeling compromises made in the IOP3365

case. The experiment conditions (in particular the true source location), however, lead to a366

much more challenging situation for the inversion procedure and demonstrate a case where367

the procedure is much more sensitive to the data and forward model errors.368

18



The IOP9 domain covers approximately x = [−498, 530], y = [−430, 2580] using a grid of369

201×303×45 (approximately 2.75 million grid points). Grid spacing in the horizontal is as370

fine as 1-2 meters in the vicinity of resolved buildings and 1 m near the surface in the vertical371

direction. Again, for computational reasons the prior distribution is restricted to a slightly372

smaller domain (x = [−180, 200], y = [310, 525]) and a checkerboard pattern is used to limit373

the total number of forward runs to 3360. The forward simulations required about 100 hours374

of wall clock time using 1024 processors. Standard deviations for the location sampling were375

again set to xσ = yσ = 100 m with means near the center of the sample domain at x = 0376

m and y = 400 m. The source strength was allowed to vary from 0.00001 to 1 kg/s. The377

inversion procedure for IOP9 required approximately ten minutes of computation time on378

four processors. The inversion time does depend on the choice of xσ and yσ and the proximity379

to buildings; the density of buildings in the IOP9 source region slows down the the sampling380

procedure since samples which fall within buildings are not allowed. Thus, a chain located in a381

narrow gap between buildings is limited in its choices for the next iteration; this requirement382

that samples not be located within buildings does not count toward a sample rejection or383

acceptance and only slightly slows the algorithm.384

5.1 Source inversion385

The resulting Markov chain paths and x-y probability distribution are shown in Figs. 16 and386

17, respectively. The IOP9 experiment collected data from only 8 sensors (compared to 15 in387

IOP3), as shown in Fig. 16; model results are compared to 15-min averages of concentration388

at the sensor locations from 15-30 minutes after the release. The availability of fewer sensors,389

combined with the location of the source between two buildings, creates difficulties for the390

inversion procedure. Figure 17 indicates three probability peaks, clustered between different391

sets of buildings. The four Markov Chains converge to locations far south of the true source392
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location, though time series of the x, y, q values do not clearly identify a single final source393

choice but continue to jump within the three peak regions of the probability distribution (not394

shown), contrary to the convergence rate plots shown in Fig. 20 which do indicate a trend of395

convergence (values of R less than 2) (Delle Monache et al., 2007). Probability distributions396

of the x, y, and q values are shown independently in Fig. 19. The y distribution shows three397

distinct peaks corresponding to the gaps between the buildings. The q distribution indicates398

good agreement in source strength; the inversion is able to pinpoint the source strength399

to within a narrow range from the original distribution of 0 to 1 kg/s: the peak indicates400

values of between 0.001 and 0.004 kg/s, which compares reasonable well with the true source401

strength for IOP9 of 0.002 kg/s.402

The peak of the full probability distribution (from Fig. 17) near x = 5m, y = 385m and403

the diffuse peak in the region of x = 5m, y = 320m do give smaller errors (as indicated404

by the reconstruction) compared to simulation results from the actual source location at405

x = 30m, y = 435m. When restricting the x, y probability distribution to source strength406

values q within 50% of the true source strength (0.001-0.003 kg/s), the resulting conditional407

probability distribution shows a peak (near y = 440 m) within 50 m west of the actual source408

location (see Fig. 18).409

5.2 Composite plume410

Figure 22 shows the resulting composite plume using the IOP9 inversion data. The shape of411

the plume is entirely different than any single realization. The broadness of the compositie412

plume shapes reflects the uncertainty in the inversion procedure, a natural property of our413

stochastic inversion procedure. The composite plume is unable to indicate concentration414

levels with any specificity in this case, it merely delineates regions where it is 90% likely that415

the concentration will be greater than 10 ppb (green) and 90 % likely that it will be less416
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than 0.1 ppb (blue).417

5.3 Discussion of model errors418

The complexity added by the presence of the source location between two buildings per-419

pendicular to the flow direction appears to challenge the inversion procedure more than in420

the case of IOP3, but this is largely due to errors in the model predictions in comparison421

with the sensor observations due to reasons mentioned above. A test of this hypothesis was422

performed using synthetic sensor data. With the source placed at the true location and us-423

ing the true source strength, the forward model results were collected at the 8 sensors to424

create a synthetic observation dataset. Inversion results using the synthetic data are shown425

in Fig. 21. All four Markov chains used in the inversion correctly identified the true source426

under these circumstances, using the same inversion parameters used for the standard IOP9427

run. Several values of σrel, xσ, and yσ were tested to determine sensitivity to these choices.428

One chain occasionally converged to a location far from the source (depending on xσ and yσ,429

not shown) indicating that the building geometry also adds complexity to the flow so that430

multiple source locations are possible even when model error is largely removed by using431

synthetic data. The choice of inversion parameters is also important in determining the rate432

and accuracy of convergence, as discussed further below.433

6 Effect of sensor density434

A common question for urban planners to consider is the placement of chemical detecting435

sensors in regions of high interest, for example near dense or high occupancy buildings in436

urban areas. Sensor network design is easily evaluated using our stochastic algorithm which437

can be used to indicate the importance of a sensor to source inversion in a particular region438
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(Lundquist, 2005). A related question exists with regard to the number of sensors required439

for accurate source inversion. The appropriate number depends generally on the complexity440

of building geometries and ambient wind conditions.441

We have evaluated the latter question using IOP3 as our test case. Of the available 15 sen-442

sors, inversion procedures were carried out using 8, 4, 2 and then just 1 of these sensors.443

The corresponding probability distributions are shown in Figure 23. As expected, the prob-444

ability distribution broadens significantly as the number of sensors is reduced, reflecting the445

increased uncertainty due to the fewer data points involved. Nevertheless, results with 2446

sensors are still able to identify the general region of the source, thus indicating that even447

as few as 2 sensors may be useful in an urban environment, provided they are deployed at448

the appropriate locations. With one sensor, the probability distribution becomes much more449

sensitive to model and observation errors. Figure 23d shows that if a sensor is used with a450

zero reading, it simply outlines the region where the source cannot be located. In this case,451

however, this outline is incorrect since the model is not able to reproduce the zero reading452

even when the source is in the correct location. Choosing another sensor (Fig. 23e) with a453

non-zero reading produces better results.454

7 Discussion and conclusions455

Our stochastic methodology for source inversion is based on Bayesian inference combined456

with a Markov Chain Monte Carlo sampling procedure. The stochastic approach used in457

this work is computationally intensive but the method is completely general and can be used458

for time-varying release rates and flow conditions, non-linear problems, and problems char-459

acterized by non-Gaussian distributions. The results of the inversion, specifically the shape460

and size of the posterior probability distribution, indicate the probability of a source being461

found at a particular location with a particular release rate, thereby inherently reflecting462

22



uncertainty in observed data or the data’s insufficiency with respect to quality, or spatial or463

temporal resolution.464

We have demonstrated successful inversion of a prototype problem with flow around an iso-465

lated building. Application to the complex conditions present during IOP3 and IOP9 of the466

Joint URBAN 2003 experiment in Oklahoma City also proved successful. Despite the many467

sources of error present in the comparison of model predictions with observed data dur-468

ing the inversion procedure, the peak of the probability distribution for the source location469

was within 70 m of the true source location for IOP3, and the actual source location was470

contained within the top percentiles of the probability distribution. For IOP9, model errors471

and other uncertainties limited the ability of the inversion procedure to exactly pinpoint the472

true source, though the source was contained within the broader distribution. A composite473

plume showing concentrations at the 90% confidence level was created for all three cases474

using plume predictions from the realizations given by the reconstructed probability distri-475

bution. This composite plume contains probabilistic information from the iterative inversion476

procedure and can be used by emergency responders as a tool to determine the likelihood of477

concentration at a particular location being above or below a threshold value. The effect of478

sensor density was also evaluated for IOP3 and found to give expected increases in the spread479

of the source probability distribution with a decrease in the number of sensors available.480

Uncertainties in the inversion procedure increase with the complexity of the domain, par-481

alleling the errors in the forward model. Because the probability distributions are able to482

reflect the uncertainty in source location, the source inversion procedure demonstrated here483

indicates high potential to be a useful tool for emergency responders regardless of model484

limitations. The building-resolving capability introduced here will enable source locations to485

be pin-pointed with high-resolution. The limiting factor to real-time response situations is486

currently the large computation time required. It is, however, conceivable that the building-487

resolving CFD model could be coupled with a simpler forward model (e.g. LODI, the La-488
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grangian particle model used by Delle Monache et al. (2007)) to reduce the prior distribution489

to a reasonable size. Thus, LODI can be used over a large urban region with our stochastic490

inversion algorithm and inversion with FEM3MP could follow to pin-point the source within491

the subregion identified by the LODI inversion. It is also conceivable that databases could be492

generated in advance for specific urban areas for plume predictions from CFD simulations,493

similar to the databases generated for IOP3 and IOP9 in this work. Forward runs could be494

performed for a variety of prevailing wind directions. In an emergency situation, the inversion495

procedure could be performed in a very reasonable time frame, on the order of ten minutes.496

Efforts to reduce forward model errors are underway in parallel research programs; forward497

model capabilities do not inhibit the stochastic algorithm in any way, though practical ap-498

plications of course depend on both. Further experience with inversion procedures in urban499

areas will lead to a better grasp of the range of the inversion parameter space most suit-500

able for dense urban areas with complex building geometries. Future work will also include501

investigation of unsteady releases, unsteady flow conditions, and elevated sources. Meteoro-502

logical uncertainty will also be incorporated to allow for errors induced by lack of sufficient503

information at the lateral boundaries such as errors in the specified mean wind direction.504
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Fig. 1. Horizontal concentration contours at the first vertical level generated by forward simulation

with FEM3MP for flow around an isolated building (white box). Four sensors are placed in the lee

of the building (white diamonds). The source location is indicated by the white square.
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Fig. 2. Gray dots show locations sampled by the four Markov chain used for source inversion for

flow around an isolated building (gray square at origin). Black diamonds indicate the four sensor

locations. Black stars show the random starting points of the Markov chains (two are co-located at

the origin). Small black square shows true source location.

28



−2 0 2 4
−3

−2

−1

0

1

2

3

Downwind distance (x/H)

C
ro

ss
w

in
d 

di
st

an
ce

 (
y/

H
)

 

 

0

0.05

0.1

0.15

0.2

Fig. 3. Probability distribution of source location for flow around an isolated building. Black dia-

monds indicate the four sensor locations. Small black square shows true source location adjacent

to peak of probability distribution.
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Fig. 4. Histogram of source strengths for flow around an isolated building. Solid vertical line shows

actual release rate magnitude.
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Fig. 5. Convergence rates for horizontal position (x, y) and source strength q for flow around an

isolated building.
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Fig. 6. Composite plume showing 90% confidence intervals for concentration levels for flow around

an isolated building (white box). The threshold is set at 0.03. For concentrations above the thresh-

old, there is 90% confidence that the concentration is higher than the contoured value. For values

below the threshold, there is 90% confidence that the concentration is less than the contoured value.

White region indicates that a 90% confidence interval cannot be established. Black diamonds indi-

cate the four sensor locations. Small magenta square shows true source location.
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Fig. 7. Surface wind vectors (every third point shown in each direction) and contours of velocity

magnitude (m/s) predicted by FEM3MP for flow in the central business district of Oklahoma City

during IOP 3 of the Joint URBAN 2003 field experiment. Buildings are indicated with various

shades of gray.
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Fig. 8. Black dots show locations sampled by the four Markov chain used for source inversion for

flow in Oklahoma City during IOP3. Black diamonds indicate sensor locations. Black stars show

the random starting points of the Markov chains. Small black square shows true source location.

Buildings that are treated explicitly are outlined in black in addition to shading; others are treated

as virtual buildings. Dashed line shows zoomed-in region near the source used for later figures.
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Fig. 9. Probability distribution of source location for flow in OKC during IOP 3. Only sub-domain

indicated by dashed line in Fig. 8 is shown. Actual source location is shown by black square.

Buildings are shaded in gray.
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Fig. 10. Histogram of source strengths for flow in OKC during IOP 3. Solid vertical line shows

magnitude of actual release rate.
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Fig. 11. Convergence rates for horizontal position (x, y) and source strength (q) for flow in OKC

during IOP 3.
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Fig. 12. Concentration plume predicted by FEM3MP with actual source location (small black

square) and release rate for OKC IOP 3 compared to averaged concentration measurements (small

squares colored by concentration value).
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Fig. 13. As in Fig. 12 except source location and strength are from peak of reconstructed probability

distribution.
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Fig. 14. Absolute error of FEM3MP predictions compared to observed concentrations at the 15

sensor locations for actual and inverted source locations.
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Fig. 15. Composite plume showing 90% confidence intervals for concentration levels for flow in OKC

during IOP 3. Observed concentrations are also shown as small colored squares. The threshold is

set at 10 ppb.
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Fig. 16. Black dots show locations sampled by the four Markov chain used for source inversion for

flow in Oklahoma City during IOP9. Black diamonds indicate sensor locations. Black stars show

the random starting points of the Markov chains. Small black square shows true source location.

Buildings that are treated explicitly are outlined in black in addition to shading; others are treated

as virtual buildings. Dashed line shows zoomed-in region near the source used for later figures.

42



Fig. 17. Probability distribution of source location for flow in OKC during IOP 9. Only sub-domain

indicated by dashed line in Fig. 16 is shown. Actual source location is shown by black square.

Buildings are shaded in gray.
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Fig. 18. Conditional probability distribution of source location for flow in OKC during IOP9 with

source strength values within 50% of true value.
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Fig. 19. Histogram of source strengths and x, y positions for flow in OKC during IOP 9. Vertical

solid lines denote release rates and location coordinates of actual source.
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Fig. 20. Convergence rates for horizontal position (x, y) and source strength q for flow in OKC

during IOP 9.
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Fig. 21. Probability distribution of source location for flow in OKC during IOP 9 using synthetic

sensor data generated from a forward simulation at the actual source location. As in Fig. 17.
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Fig. 22. Composite plume showing 90% confidence intervals for concentration levels for flow in OKC

during IOP 9. Observed concentrations are also shown as small colored squares. The threshold is

set at 10 ppb.
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Fig. 23. Probability distribution of source location for flow in OKC during IOP 3 using 8, 4, and

2 sensors, and two different instances with 1 sensor of chosen from the original 15. Sensors chosen

are shown with black diamonds. The true source is indicated by the black square.
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1. Lawrence Livermore National Laboratory, Livermore, CA 94551
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ABSTRACT

The rapid identification of contaminant plume sources
and their characteristics in urban environments can
greatly enhance emergency response efforts. Source
identification based on downwind concentration mea-
surements is complicated by the presence of building
obstacles that can cause flow diversion and entrain-
ment. While high-resolution computational fluid dynam-
ics (CFD) simulations are available for predicting plume
evolution in complex urban geometries, such simulations
require large computational effort. We make use of an ur-
ban puff model, the Defence Science Technology Labo-
ratory’s (Dstl) Urban Dispersion Model (UDM), which em-
ploys empirically based puff splitting techniques. UDM
enables rapid urban dispersion simulations by combin-
ing traditional Gaussian puff modeling with empirically
deduced mixing and entrainment approximations. Here
we demonstrate the preliminary reconstruction of an at-
mospheric release event using stochastic sampling al-
gorithms and Bayesian inference together with the rapid
UDM urban puff model based on point measurements of
concentration. We consider source inversions for both a
prototype isolated building and for observations and flow
conditions taken during the Joint URBAN 2003 field cam-
paign at Oklahoma City.

The Markov Chain Monte Carlo (MCMC) stochastic
sampling method is used to determine likely source term
parameters and considers both measurement and for-
ward model errors. It should be noted that the stochastic
methodology is general and can be used for time-varying
release rates and flow conditions as well as nonlinear dis-
persion problems. The results of inversion indicate the
probability of a source being at a particular location with
a particular release rate. Uncertainty in observed data, or
lack of sufficient data, is inherently reflected in the shape
and size of the probability distribution of source term pa-
rameters. Although developed and used independently,
source inversion with both UDM and a finite-element CFD
code can be complementary in determining proper emer-
gency response to an urban release. Ideally, the urban
puff model is used to approximate the source location
and strength. The more accurate CFD model can then
be used to refine the solution.

1. INTRODUCTION AND BACKGROUND

In the event of an atmospheric release, effective con-
sequence management depends on how much is known
about the release event and how quickly the problem
can be analyzed to an operationally required degree of
certainty. Accurate quantification of specific details of a

∗Corresponding author address: NARAC/IMAAC, L-
103, Lawrence Livermore National Laboratory, Liver-
more, CA 94551 email: glascoe1@llnl.gov

release can greatly assist relief efforts and subsequent
forensic analysis. Such quantification, rarely a straight-
forward task, becomes particularly complicated when the
release occurs in the presence of building obstacles that
can cause flow and dispersion complications. To assist
the rapid analysis of atmospheric releases, the ‘event re-
construction’ (ER) methodology was developed to pro-
vide answers to the questions surrounding a release
event: (1) what was released, (2) how much was re-
leased, and (3) when and where it occurred (Aines et al.
2002; Kosovic et al. 2005). The ER approach developed
at Lawrence Livermore National Laboratory is a Bayesian
inference methodology combining observed data with for-
ward predictive models to determine unknown source
characteristics. This capability can leverage from a large
computational framework that supports multiple stochas-
tic algorithms, forward models, and runs on a wide range
of computational platforms. To analyze urban dispersion
rapidly, the ER methodology was linked to the rapid urban
puff splitting model, the UDM Version 2.2, developed by
Dstl, a United Kingdom Ministry of Defence Lab located
in Porton Down. For this study, the stochastic algorithm
used in the Bayesian inference scheme is a Markov Chain
Monte Carlo (MCMC) algorithm. All UDM and ER runs
were processed for this effort using a single processor on
an MS Windows operating system.

The Urban Dispersion Model (UDM) is an empirical
puff model that estimates atmospheric dispersion in an
urban environment by differentiating three different puff
splitting regimes (open, urban, and long-range) based on
empirical evidence. Different dispersion modeling proce-
dures are applied for each regime in such a way to ac-
count for the effect of single building, building clusters, or
an entire urban environment on the dispersion of Gaus-
sian puffs (Hall et al. 2003).

In the open regime, the overall proportion of the sur-
face covered by obstacles is less than five percent. The
puffs arising in this regime travel across a largely open
terrain over which single obstacles or groups of obstacles
are distributed. Interaction with these obstacles changes
the size and rate of travel of the puff. If the obstacle is
of sufficient size in comparison to the puff, the puff will
split: a portion of the material will become entrained in the
wake of the building while the remainder proceeds largely
unaffected. The fraction of the puff that is entrained will
spread uniformly across the entrainment region and be
delayed by a characteristic wake residence time. After
interaction with the obstacle, puff spreading of both the
unentrained puff and the entrained puff is increased due
to turbulence in the recovery region.

In the urban regime, the plan area density of the ob-
stacles is greater than five percent. The single obstacle
interactions utilized in the open regime are no longer valid
due to interference with multiple entrainment regions from
densely distributed obstacles. Puffs quickly become large



enough to encompass obstacles resulting in a lateral dis-
persion that is effectively higher than the value given by
traditional puff models due to puff interaction with surface
obstacles. Atmospheric stratification is assumed neutral
in this regime for UDM 2.2, a reasonable assumption as
mechanically generated turbulence in the urban environ-
ment is likely to dominate dispersion near the ground. For
the long-range regime the puff is large compared to any
surface obstacles, and puffs are treated with conventional
Gaussian dispersion modeling techniques.

The UDM was implemented into the existing ER frame-
work to provide rapid results taking urban obstacles into
consideration. The UDM implementation complements
efforts employing the FEM3MP CFD model (see Chan
et al. (2001); Chow et al. (2006)). The UDM is compu-
tationally expedient enough to run on a single proces-
sor, as a typical forward simulation with over 100 build-
ings requires less than a minute to complete for the most
complicated case (a similar CFD run requires on the or-
der of 100 CPU hours). Other advantages of using the
UDM for rapid analysis are its relative ease-of-use with
customizable buildings, source strength and location, and
easily described sensor locations. Disadvantages of us-
ing a simple empirical model with ER include the fact that
empirically based building-wake entrainment and detrain-
ment methods inherent to such a model create inversion
difficulties due to discontinuities. Also, the simple wind
field and puff splitting techniques which allow for rapid dis-
persion calculations tend to lead to reduced accuracy in
comparison to CFD modeling. As an example of lost de-
tail, the UDM does not directly model channeling effects
between buildings, a phenomenon typically observed in
urban experiments, including the URBAN 2003 field cam-
paign (Allwine 2004). However, depending on source lo-
cation relative to important building obstacles, puff en-
trainment and detrainment can provide some compensa-
tion for the lack of channeling effects (Figure 1). The Ok-
lahoma City example discussed below demonstrates the
problems that this can cause in the final source charac-
terization.

Two example ER scenarios using the UDM are dis-
cussed below. The first scenario is for simple flow around
a cubic building; the second scenario is a release in
downtown Oklahoma City for observations and flow con-
ditions during the Joint URBAN 2003 field campaign.
In both simulations, the event reconstruction code si-
multaneously samples both source location and source
strength. In the UDM 2.2, source strength is represented
by total mass released, and results of probable source
strength are presented in this way.

2. RECONSTRUCTION METHODOLOGY

The ER framework for this study performs stochastic
inversion using MCMC techniques (see, for example, Gel-
man et al. (2003)). The procedure is as follows: 1. es-
timates of source location and source strength are ob-
tained from a defined prior distribution or proposal distri-
bution of source term parameters; 2. the forward model
(UDM) is run using these input values; 3. the output sen-
sor data from the forward model is compared to the ob-
served data using Bayes theorem; 4. the sampled source
term configuration is either accepted or rejected follow-
ing a Metropolis-Hastings algorithm; 5a. if accepted, the
likelihood function is updated and the values used in the
next iteration are sampled from the proposal distribution

Figure 1: Given a highly complex domain, with
buildings of various shapes and sizes, and concen-
tration measurements at a few locations, is it possi-
ble to find the source of a contaminant plume with a
fast urban puff model?

centered on the accepted value; 5b. if rejected, the next
point is selected based on the last accepted value; 6. this
process is repeated for a large number of iterations until
the convergence to a posterior probability distribution of
source term parameters (representing the solution to the
inverse problem) is achieved. Effective reconstruction us-
ing Bayesian inference via stochastic sampling requires
model and data error quantification. A single log-normal
standard deviation distribution characterized by a single
input parameter is used to represent both uncertainty in
the sensor measurements and uncertainty in the forward
model. The higher the input value of error, the broader
the resulting probability distribution will be. More details
on this methodology can be found in Johannesson et al.
(2004) and in proceedings paper J4.4 (Chow et al. 2006).

3. ISOLATED BUILDING

The first test of integrating UDM with the ER method-
ology is a simple cubic building, 10m to a side and is a
follow-on study to the ‘Isolated Building’ of paper J4.4 in
these proceedings (Chow et al. 2006). Figure 2 shows
a forward simulation using the UDM. The entrainment re-
gion is clearly visible in the figure. Also, the intentional
slight asymmetry of the source location can be seen in
the resulting plume. The ER was performed in compari-
son to synthetic data generated by the UDM for an ‘actual’
source location.

The resulting Markov chains for the source inversion
are shown in Figure 3. The asterisks mark the initial loca-
tion of each of the four chains. The diamonds represent
the four sensors, and the actual source is shown as a
magenta square. After some exploration of the domain
space, the chains quickly converge to the area immedi-
ately surrounding the actual source location. Note that
two of the Markov chains explored the entrainment re-
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Figure 2: Horizontal concentration contours at the
first vertical level generated by a UDM forward sim-
ulation for flow around an isolated cubic building.
Four sensors are placed in the lee of the building.

gion. This result reflects how puffs arising in a building
entrainment region are automatically fully entrained and
how the detrainment process simulates a source. How-
ever, the resulting probability distribution, Figure 4, shows
that the number of samples that the Markov chains sam-
pled from the entrainment region is negligible compared
to the number of samples in the vicinity of the actual
source. Note the peak of the probability distribution is
close to the actual source location.

In addition to the source location, release strength was
stochastically sampled during this simulation. The result-
ing release strengths are displayed in a histogram in Fig-
ure 5. The distribution of total mass has a single, signif-
icant peak in very good agreement with the actual value,
shown as a solid vertical line. When model predictions
are compared to synthetic data, as in this example, the
source inversion calculation is very accurate. However,
to conduct source inversion for actual events, the model
must be able to predict source characteristics using real
data. Due to random and systematic differences between
sensor measurements and model predictions, we expect
that event reconstruction will be less accurate in this case.

4. OKLAHOMA CITY - JOINT URBAN 2003 IOP3

Given a highly complex domain, with buildings of vari-
ous shapes and sizes, and concentration measurements
at a few locations, the possibility of locating the source of
a contaminant plume and determining its characteristics
using a fast Gaussian puff model is of great interest (Fig-
ure 1). Event reconstruction with the UDM was applied to
Oklahoma City in order to compare the model output to
observations from the Joint URBAN 2003 field campaign.
A standard shape file of downtown Oklahoma City was
used to construct the buildings. Actual source and sen-
sor locations were used to recreate the field experiment.
An event reconstruction calculation was conducted using
concentration measurements from the Intensive Obser-
vational Period 3 (IOP3) from the Joint Urban 2003 tracer
field experiment in Oklahoma City with a southerly wind
input. A UDM 3D puff simulation and the downtown of
Oklahoma City is illustrated in Figure 6. During our sim-
ulations, one large building in the south of the modeled
domain was found to play a key role. The entrainment
region of this building will be shown to adjust for some
deficiencies of the forward model, specifically the lack of

Figure 3: Paths of four Markov chains for flow
around an isolated cubic building. Note that the ma-
genta square indicates the source and the black di-
amonds indicate the four sensors.

Figure 4: Probability distribution of source location
for flow around an isolated cubic building.
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Figure 5: Histogram of source strengths for flow
around an isolated cubic building. Vertical blue line
indicates actual release rate.

channeling effects.
Puffs and 2D contours of ground-level concentration

are displayed in Figures 6 and 7, respectively. Wind
speed was 6.5m/s at 50m above ground. The number
of iterations is 1700 and each of those iterations involved
four Markov chains. The complete calculation took less
than 33 hours on a single 857 MHz processor. Scaling lin-
early, if eight Markov chains are distributed to eight sepa-
rate 857 MHz processors, the entire calculation, could be
completed in approximately one hour.

The resulting Markov chains are illustrated in Figure 8.
Note how the chains quickly converge to south of the do-
main. While there is good mixing by three of the chains,
one chain becomes stuck in a local minimum, and re-
mains at the northwest corner of the building. The re-
sulting probability distribution is shown in Figure 9. There
are three distinct peaks visible in the distribution. One
peak is within 20m of the actual source location, which
is shown as a triangle. Another peak is towards the bot-
tom of the domain, and the third near the large building,
part way between the other two locations. Three peaks
are also noted in the release strength histogram, Figure
10. One peak is a very low value of release mass. The
second, smallest, peak corresponds with the actual re-
lease mass, shown as a solid vertical line. The final peak
is a higher value, between 8 kg and 9 kg of total mass
released during the simulation.

In order to determine the probable locations that corre-
sponded to each of the three most likely release rates,
conditional probability for each was computed. Figure
11 illustrates the conditional probability of source loca-
tion depending on release mass (low, mid and high) and
Figure 12 illustrates the relatively rapid convergence on
source location as opposed to source strength. The low
peak, less than 1 kg, corresponded to the location very
near the actual source location. The resulting probabil-
ities for both location and strength are about 25%, indi-
cating that one of the four chains spent much of its time
in that location without being able to further explore the
domain. This is confirmed by examining the details of
the Markov chains: one chain spends the simulation in
that location. The release strength is low because of the
close proximity to the sensors.

The conditional probability corresponding to the actual
mass, 3.1 kg < q < 4.1 kg, peaks toward the bottom of
the domain, almost 200m south of the actual source lo-
cation. When the source material is released in the model
from the actual source location, the puffs are too nar-
row to hit the sensors channeling northeast of the source.
When the source is located at the peak of the middle plot
of Figure 11, the increased distance to the sensors and
the interaction with the large building sufficiently enlarge
the puff to better agree with the actual concentrations.
The conditional probability corresponding to the highest
release strength, 8.25kg < q < 9.25kg, is shown in the
far-right plot of Figure 11. Due to its proximity to the large
building, material released from this point is automatically
entrained in the building’s wake. Here, the entrainment
region acts as a source, releasing material from the en-
trainment region over time. The entrainment creates a
large, diffuse puff in the wake of the building, resulting in
predicted source strengths for this location that are higher
than the actual value.

5. DISCUSSION AND CONCLUSIONS

Event reconstruction calculations using the Urban Dis-
persion Model, UDM, can be performed very rapidly to
provide a valid initial approximation for source location
and release strength even in a complex urban environ-
ment. As an emergency response tool, event reconstruc-
tion with the UDM is more applicable than a CFD equiva-
lent because of the speed at which a complete calculation
can be completed. Ideally, results obtained from recon-
struction with UDM can be used to significantly decrease
the sampling domain needed to perform more accurate
CFD calculations. That is, using independent data, poste-
rior distributions obtained using ER with the UDM can be
used as a prior distribution for ER with a CFD code. With
a smaller domain, those subsequent calculations can be
conducted much more expediently.

When conducting a source inversion calculation using
the UDM as a forward model, it is important to have all
Markov chains exploring the domain space in order to
predict accurate source probability distributions. In or-
der to obtain sufficient mixing, input parameters such as
step size in x and y, step size in q, and quantified er-
ror should be specified carefully with attention to appro-
priate values relevant to the scale of the problem. De-
termining the correct input values for these parameters
can take some trial and error. As illustrated in the Okla-
homa City example, one of the main sources of error in
the posterior probability distributions for complicated city
examples is the lack of channeling effects in the forward
model UDM. The wind field applied by UDM is very sim-
plified and cannot reproduce complex urban flows beyond
building entrainment. Channeling effects are somewhat
compensated for by building entrainment effects, but the
results of the reconstruction consequently may not reflect
the actual source location.

The next step in this research is to test the UDM with a
larger domain space and with more sensor data. Sensor
data for the Oklahoma City example exists up to 4 km
from the source. It is anticipated that with an extended
domain, the lack of channeling producing error over the
short range will have less impact on the results. Also,
stochastic sampling of wind direction as well as source
location and strength may give better results.

4



Figure 6: Three-dimensional puffs generated by a forward simulation with the UDM 2.2 for flow in and
around the downtown business district of Oklahoma City. Note how the puffs expand and entrain behind
the larger buildings.

Figure 7: Horizontal concentration contours at the first vertical level generated by a single forward simulation
with the UDM 2.2 for flow in and around the downtown business district of Oklahoma City.
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Figure 8: Paths of four Markov chains for flow in and around the downtown business district of Oklahoma
City.

Figure 9: Probability distribution of source location for flow in and around the downtown business district of
Oklahoma City. The magenta delta indicates actual release location.
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Figure 10: Histogram of source strengths, q, and the conditional probabilities for flow in and around the
downtown business district of Oklahoma City. Vertical blue line indicates actual release rate.

Figure 11: Conditional probability distribution of source location for flow in and around the downtown busi-
ness district of Oklahoma City. The magenta delta indicates actual release location.
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Figure 12: Convergence of x and y location, and slower conversion of strength q for the Oklahoma City
example.

Figure 13: The building wake entrainment acts as a flow channeling effect within the UDM. Horizontal
concentration contours at the first vertical level generated by forward simulation with UDM for flow in and
around the downtown of Oklahoma City for the location associated with actual source strength.
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Synthetic Event Reconstruction Experiments for 
Defining Sensor Network Characteristics 

 
   Julie K. Lundquist, Branko Kosović, and Rich Belles 
 
     Abstract 
 
An event reconstruction technology system has been designed and implemented 
at Lawrence Livermore National Laboratory (LLNL). This system integrates 
sensor observations, which may be sparse and/or conflicting, with transport and 
dispersion models via Bayesian stochastic sampling methodologies to 
characterize the sources of atmospheric releases of hazardous materials. We 
demonstrate the application of this event reconstruction technology system to 
designing sensor networks for detecting and responding to atmospheric releases 
of hazardous materials. The quantitative measure of the reduction in uncertainty, 
or benefit of a given network, can be utilized by policy makers to determine the 
cost/benefit of certain networks. 
 
Herein we present two numerical experiments demonstrating the utility of the 
event reconstruction methodology for sensor network design. In the first set of 
experiments, only the time resolution of the sensors varies between three 
candidate networks. The most “expensive” sensor network offers few advantages 
over the moderately-priced network for reconstructing the release examined 
here. The second set of experiments explores the significance of the sensors’ 
detection limit, which can have a significant impact on sensor cost. In this 
experiment, the expensive network can most clearly define the source location 
and source release rate.  The other networks provide data insufficient for 
distinguishing between two possible clusters of source locations. When the 
reconstructions from all networks are aggregated into a composite plume, a 
decision-maker can distinguish the utility of the expensive sensor network. 
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1. Introduction 
 
To detect the atmospheric transport of hazardous materials, new and innovative 
sensor networks are currently being designed and deployed. These networks can 
serve one or more of several purposes: they can detect the spread of hazardous 
materials before large populations have been exposed so that emergency 
response officials can organize evacuations; they can identify the size of the 
release so that officials can respond during an event with evacuations or 
inoculations; they can be used in a forensic role, post-event, to describe the 
release so that decontamination efforts can be prescribed. 
 
Many types of sensors and sensor networks for detecting atmospheric releases 
of hazardous materias have been designed; some networks have been 
deployed, such as the BioWatch network that is designed to provide early 
warning in the case of a mass pathogen release (Shea and Lister, 2003). These 
networks have varying degrees of detection sensitivities, false-alarm rates, and 
frequency of data collection. However, the utility of these networks in 
characterizing the sources of atmospheric releases of hazardous materials has 
not yet been demonstrated systematically to our knowledge.  
 
Reconstructing the source of a detected atmospheric release is a crucial step in 
predicting the consequences of such a release. The primary source of 
uncertainty in prediction the consequence of an atmospheric release is 
determining the source term characteristics, such as location, magnitude, and 
duration of the release. The type of source is also a crucial component in 
determining consequences: sources may be instantaneous (like an explosion) or 
continuous (a long-term release), localized to one point or over a wide area, 
static or moving, at the surface or elevated. Even if the source is perfectly 
characterized, the complexity of atmospheric flow, especially in urban 
environments or in complex terrain, presents additional challenges for a 
dispersion model.  
 
An event reconstruction technology system has been designed and implemented 
at Lawrence Livermore National Laboratory (LLNL). This system integrates 
sensor observations, which may be sparse and/or conflicting, with transport and 
dispersion models via Bayesian stochastic sampling methodologies to 
characterize the sources of atmospheric releases of hazardous materials. The 
event reconstruction methodology identifies source characteristics (such as 
location, magnitude, duration) that are most consistent with the observed data, 
given a quantification of the errors expected in the both the observations and in 
the forward dispersion model. Once the source is characterized, an ultimate 
prediction of likely affected areas is possible. This ultimate prediction is a 
composite of all the likely sources and can guide emergency responders more 
effectively than a single forward prediction from a single (possibly incorrect) 
estimate of source characteristics. The composite prediction provides a measure 
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of uncertainty in source characterization and the result of the release of 
hazardous material. 
 
Ideally, the observations describing an event would provide enough information 
about an event so that the uncertainty regarding the source location or 
magnitude is very low. To ensure this minimal uncertainty, sensor networks must 
be designed with that goal in mind. It is possible, using the event reconstruction 
system, to examine certain scenarios of interest using different sensor networks 
to determine which sensor network(s) will provide the greatest reduction of 
uncertainty in source characterization and response. This quantitative reduction 
in uncertainty can be provided to policy makers to determine the cost/benefit of 
certain networks. Questions such as the following can be addressed: 

• Would a network consisting of fewer instruments that are more sensitive 
protect my facility better than a network with more instruments that are 
less sensitive? 

• If I have time constraints on my response to the detection of a release, 
how often must I collect information from my sensors? 

• To reduce costs while still protecting my city, is a dense network of 
instruments with a high false alarm rate a better choice than a sparse 
network of more reliable instruments? 

 
To demonstrate the utility of the event reconstruction system for answering 
questions like these, we present a pair of numerical experiments designed to 
determine and quantify the advantages of using sensors of varying time 
resolutions and varying detection limits for identifying a source of a hazardous 
release that affects a suburban domain of size 6 km by 6 km. This experiment 
quantifies the importance of time resolution and sensor detection limit thresholds 
in otherwise identical instruments deployed to identify the source of a 1.5-hour-
long release of a neutrally-buoyant gas in the suburban area. Although these 
experiments were loosely based on an actual atmospheric tracer experiment (the 
Copenhagen release, Grying and Lyck, 1984), such experiments using the LLNL 
event reconstruction methodology require only a definition of the region of 
interest, a climatology of atmospheric conditions for that region, some 
specification of the types of releases required to be considered, a transport-and-
dispersion model suitable for simulating the dispersion of the material(s) of 
interest, and a measure of error for the sensor observations and the transport-
and-dispersion model predictions. 
 

2. Description of the event reconstruction methodology 
 
LLNL’s event reconstruction methodology (Kosovic et al., 2005) integrates 
Bayesian stochastic methodologies with “forward” atmospheric transport and 
dispersion models and observations of atmospheric concentrations due to an 
atmospheric release to determine unknown source parameters. The event 
reconstruction system can provide optimal characterization of unknown source 
term parameters, given a set of measurements of atmospheric concentrations Mij 
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at locations i and times j, an atmospheric dispersion model that predicts 
concentrations Cij at locations i and times j as a function of source term 
parameters, and quantification of the error in both model predictions of 
concentrations C and observed measurements M. 
 
For example, event reconstruction is often used to determine probabilistic 
estimates of two unknown source terms parameters, source location X and 
source magnitude R. This final probabilistic estimate is known as the posterior 
distribution, which is calculated over many iterations in the following way. At an 
nth iteration of the reconstruction, a Markov chain samples unknown source term 
parameters Xn and Rn from a large set of possibilities X and R. These source 
parameters Xn and Rn are provided to an atmospheric transport and dispersion 
model, which uses Xn and Rn to predict atmospheric concentrations at sensor 
locations i and times j. The measurements Mij and the model predictions Cij(XnRn) 
are compared; details of that comparison are discussed below. Based on that 
comparison, the probability of source location Xn and source magnitude Rn are 
evaluated via comparison to previous guesses Xn-1, Xn-2, … and Rn-1, Rn-2, …. 
If the comparison is favorable for Xn and Rn, their values are retained for 
subsequent comparisons of Xn+1 and Rn+1. Eventually, convergence to a final 
posterior distribution is attained, and that final posterior distribution summarizes 
the most likely of source term parameters X and R given measurements and their 
error, prior knowledge about the characteristics of the source, and prior estimates 
of the transport and dispersion model error.  
 
This process, known as Markov Chain Monte Carlo sampling for Bayesian 
inference, is discussed in detail in popular texts such as Robert and Casella 
(2005) and Liu (2001), e.g.. The sampling procedure used herein relies on a 
Metropolis-Hastings algorithm for generated samples Xn and Rn from a domain of 
possibilities X and R. Multiple Markov Chains can proceed through the domains 
X and R simultaneously; four Markov Chains are used in the reconstructions 
presented here. 
 

a. The “forward” atmospheric transport and dispersion model 
 
A core component of an atmospheric event reconstruction is the efficient use of 
an atmospheric dispersion model. The present methodology has been used with 
a wide array of transport and dispersion models. These models include a 
relatively simple and fast 2D Gaussian puff model INPUFF (Petersen and 
Lavdas, 1986), a Lagrangian particle dispersion model LODI which is used at 
LLNL’s National Atmospheric Release Advisory Center (NARAC) (Ermak and 
Nasstrom, 2000, Larson and Nasstrom, 2001), and a building-resolving 
computational fluid dynamics code FEM3MP (Chan and Stevens, 2000; Chow et 
al., 2006). In each case, thousands of possible source term parameters Xn and 
Rn, are provided to the forward dispersion model, meaning that thousands of 
forward simulations are carried out. Computational efficiencies such as a Green’s 
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function approach (Chow et al. 2006) are available to reduce the number of 
forward simulations, but have not been employed for the study presented herein. 
  
The National Atmospheric Release Advisory Center’s Lagrangian particle 
dispersion model, LODI, provided the forward atmospheric transport and 
dispersion simulations for this experiment. Based on a given source location and 
release rate, LODI generates a number of Lagrangian particles that disperse 
within its simulation domain based on meteorological and turbulence parameters 
calculated by LODI and provided to it by a meteorological data assimilation 
model, ADAPT (Sugiyama and Chan 1998), also developed at the National 
Atmospheric Release Advisory Center.  
 

b. The likelihood function and assumed error 
 
The quality of the reconstruction, or the precision of the final posterior distribution 
of the unknown source term parameters, is related to the error assumed or 
known in both the actual measurements used in the reconstruction and the 
forward model (as well as to the quality of the data used in the reconstruction). 
For the reconstructions discussed here, these two errors are incorporated into 
one error parameter, σ, which is utilized in the comparison described above.  
 
The measurements Mij and modeled concentrations Cij are first compared to the 
detection range of the instruments used. Any measurements or modeled 
concentrations above the saturation level of the instrument are set to the 
saturation level; any measurements or modeled concentrations below the 
detection limit are set to the detection limit or sensor sensitivity threshold. The 
natural log of the likelihood function L for source Xn and Rn over all the sensor 
measurements N is a function of the difference between the measurements and 
the modeled concentrations assuming source parameters Xn and Rn: 
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This likelihood value LXnRn is compared to that of previously-tested values such as 
LXn-1Rn-1. Other likelihood functions are possible. Generally, values of source term 
parameters that lead to smaller values of L are retained, although some 
violations of that rule are allowed to ensure wide sampling of the source term 
domains X and R and to prevent any Markov chain from being caught in a local 
minimum of L. Successful likelihood values contribute to the final posterior 
distribution.  
 
If larger errors in measurements or modeled concentrations are appropriate, 
larger values of σ should be assumed. For all reconstructions presented herein, 
σ=0.2. Larger values of the error range, or s, will generally lead to broader final 
posterior distributions. Possible bias in the measurements or in the model is not 
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accounted for in the formulation of the likelihood function as presented here, but 
may be incorporated into the likelihood function. 
 

3. Description of the numerical simulations 
 
These simulations were roughly based on the Copenhagen tracer experiments 
(Gryning and Lyck, 1984), using a domain, terrain features, and meteorology 
from the 19 July 1979 release of sulfur hexafluoride tracer gas in the suburban 
Copenhagen area. Hourly averages of wind speed and wind direction from the 
TV tower from which the tracer gas was released were used to define a wind field 
in NARAC’s ADAPT model; observations from four levels above the surface were 
available (10m, 60m, 120m, and 200m). Boundary-layer height (2090m) was 
estimated from a sounding released within 10km of the source. Friction velocity 
(0.77 m/s) was estimated from the mean wind profile. Surface roughness for the 
suburban domain was estimated at 0.6m. Although the meteorology was 
prescribed for this event reconstruction, the characteristics of meteorology could 
also be included in the set of unknowns that the event reconstruction system 
seeks to identify. Wind speed and wind direction profiles for hours 1000, 1100, 
and 1200 UTC (local time – 1 hour) appear in Figure 1. Note that wind direction 
was reported only at 10m, 120m, and 200m levels. 
 
Two numerical studies are presented herein. The first study explores the role of 
time resolution of the instruments used in this study. The second study explores 
the role of sensor sensitivity or detection limit. Each study includes three 
reconstructions; all reconstructions attempt to identify the location (in the 
horizontal plane) and rate of release of the tracer gas. Four sensors with known, 
fixed locations are distributed within the domain, nominally 2-4 km from the 
source. (The locations of the sensors correspond to actual locations of sensors 
used during the 1979 experiments; these sensors are numbers 1-22, 1-38, 3-23, 
and 3-32 using Gryning’s sensor identification system (Gryning 1981).) This 
situation is analogous to a scenario in which sensor locations are predetermined 
by logistical constraints, but sensor characteristics, such as averaging time or 
sensitivity, are flexible. All simulations use the same hourly meteorology and 
seek to characterize the same release, which commences at 1050 UTC and 
concludes at 1220 UTC, releasing material at a constant release rate of 3.2e+09 
ng/sec. 
 
Each simulation uses sensors from the same four locations for each simulation, 
as well as “synthetic” concentrations reported by LODI given the actual source 
location and release rate. The synthetic concentrations recorded at each location 
were based not only on LODI’s predicted concentrations at the 100m x 100m (x 
20m high) grid cell encompassing each sensor’s location, but also including the 
eight nearest neighbors of that grid cell using the weighting scheme shown in 
Figure 3. Because sensors in the Copenhagen experiment were typically 
mounted on street poles at altitudes 0-20m above the surface, LODI 
concentrations for the lowest 20m are considered. 
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The reconstructions are summarized in Table 1. For the first study, the three 
reconstructions differ in the time resolution of the sensor providing data. Although 
all sensors recorded data from 1038-1238 UTC, the “60m resolution” sensors 
(where “m” indicates “minutes”) reported averaged concentrations for 1038-1138 
and 1138-1238; the “10m resolution” sensors reported averaged concentrations 
for a total of twelve ten-minute intervals; and the “5m resolution” sensors 
reported averaged concentrations for a total of twenty-four five-minute intervals. 
In a domain of this size (6km length scale) and for wind speeds of this magnitude 
(average of 9.2 m/s at 60m altitude over the three relevant hours), ten minutes 
are required for material to be transported throughout the domain. Therefore, 
only an instrument with time resolution at or greater than this ten-minute time 
scale is expected to provide adequate information to characterize the source 
location and magnitude. All the sensors can detect atmospheric concentrations 
between 10 and 10000 ng/m3, or three orders of magnitude, based on the 
reported detection limits used in the original Copenhagen study (Gryning, 1981). 
 
For the second study, the detection limit (or sensor sensitivity) varies. All the 
sensors report data at ten-minute intervals, as the “10m resolution” sensors in 
the first experiment. The “low-threshold” reconstruction uses data from 
instruments with an expanded lower detection limit, reporting in a range from 
0.01 to 10000 ng/m3, or over six orders of magnitude. The moderate threshold 
sensor network reports data over three orders of magnitude, from 10 to 10000 
ng/m3. The “high-threshold” reconstruction uses limited data from instruments 
reporting from 1000 to 10000 ng/m3.   
 
Event reconstruction was carried out for 5000 iterations for each sensor set, 
searching over source x and y location and release rate. All simulations were 
carried out on Livermore Computing’s mcr platform, using less than 12 cpu hours 
on 68 2-processor nodes. 
 
 Time Resolution 

of sensors 
(minutes) 

Sensor detection range 
(orders of magnitude) 

Qualitative 
description of 
network 

four_05mres 5  3 Expensive 
four_10mres 10  3 Moderate 
four_60mres 60  3 Inexpensive 
low_thresh 10  6 Expensive 
four_10mres 10  3 Moderate 
high_thresh 10  1 Inexpensive 
Table 1: Summary of reconstructions discussed herein. The “four_10mres” reconstruction 
is utilized in both the time-resolution study and the detection limit study. 

 
 

4. Assessment of the sensor networks tested 
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Several metrics can assess which type of network provides optimal information to 
users wishing to understand the source of material responsible for the observed 
data. Before considering these metrics, it is advisable to ensure that a 
reconstruction has converged. These metrics include histograms of source 
characteristics, probability contours of source location, and finally, composite 
plumes based on the posterior distribution from the reconstruction. 
 

a. Convergence metrics 
 
The posterior distribution can only be determined if a reconstruction has 
converged. Only information generated after convergence should be considered 
when evaluating a sensor network. Little information can be gleaned from 
convergence tests other than the fact that convergence has been attained, which 
is necessary for subsequent analysis of the posterior distribution to which the 
reconstruction has converged.  
 
Convergence is typically defined (Gelman et al., 2004, p. 297) by a measure of 
the variation between the chains used in the reconstruction to variation within 
each chain. When this ratio, R_hat, approaches 1 (in practicality, is less than 2), 
convergence is said to be attained. Each of the three reconstructions converged 
rapidly, within the first 1000 iterations. Iterations 2000-5000 constitute the 
posterior distributions, presented here via histograms, probability contours, and 
composite plumes. The convergence metric R_hat for all three reconstructed 
parameters (x-location, y-location, and release rate) are shown in Figure 4 (for 
the time-resolution study) and in Figure 5 (for the sensor-threshold study).  
 

b. Location histograms 
 
After convergence has been attained, the posterior distribution of the 
reconstruction reveals the characterization of the source. For synthetic studies 
and reconstructions based on studies in which the exact characteristics of the 
source are known, as presented here, a comparison of the histogram to “truth” 
can generate confidence in the reconstruction. In cases for which “truth” is 
unknown and to be determined, the histogram’s nature (flat vs. sharp) can 
indicate how much information is attainable from available data.  
 
The histograms for each of the three source characteristics reconstructed (y-
location; x-location; and release rate), along with an indicator of “truth”, are 
shown below. The largest uncertainty in the reconstruction of a source location is 
typically in the direction along the mean wind, which in this case, is in the x-
direction. Therefore, the histograms of y-locations should be narrowly focused 
and more correct.  
 
In the time-resolution experiment, all sensor arrays identify the y-location of the 
source within a 3-km range, while the reconstruction explored a 10-km range 
(Figure 6). However, the 60-min (Figure 6c) resolution sensors provide a 
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reconstruction with a bimodal distribution of y-location, with one peak at the 
correct location (indicated with the heavy vertical line) and one location 1.5 km 
north of the correct location. This bimodal probability distribution indicates a 
suboptimal network.  
 
In the detection-threshold experiment, the “expensive” network with instruments 
with a low detection threshold provides a reconstruction that clearly and correctly 
identifies the y-location of the source (Figure 7a), indicating the utility of this type 
of instrument. The moderate-threshold instruments constitute a suboptimal 
network (Figure 7b), indicating a bimodal distribution of y-location, with one peak 
at the correct location (indicated with the heavy vertical line) and one location 1.5 
km north of the correct location. Finally, the inexpensive network of instruments 
with a high detection limit provides no information on the y-location of this source, 
indicated by the flat distribution in Figure 7c. 
 
As noted above, the greatest location uncertainty in a reconstruction is typically 
in the direction of the mean wind, which in this case was from the west. This 
large uncertainty is seen in the broad probability distributions for x-location. 
 
In the time-resolution experiment, distributions of the x-locations include probable 
locations within a 5-km range around the correct source location (and would 
probably extend further upwind had the domain been large enough to include 
such locations). The superior time resolution of the 5-minute resolution sensor 
network did not provide the ability to reduce the uncertainty in x-location for this 
case (Figure 8a) over the uncertainty determined with the moderate network 
(Figure 8b). This failure disproves the hypothesis that the 5-minute resolution 
sensors would resolve the arrival time of the plume more precisely than the 10-
minute resolution sensors, because the advection time from an upwind sensor to 
a downwind sensor (distance of nominally 4 km) with mean winds of 9.2 m/s is 
less than 8 minutes. The tracer gas release did last for ninety minutes, however; 
an instantaneous release of tracer gas would likely be reconstructed better by the 
higher time resolution sensors. 
 
In the detection-threshold experiment, a more marked difference between the 
networks is evident. The low-detection threshold instruments do identify the 
correct x-location within 3 km, with a Gaussian distribution (Figure 9a) and a 
significant peak close to the real source. The moderate network identifies a 
broader range of possible x-locations (Figure 9b), while the high-detection limit 
instruments provide no information at all to reduce the range of possibilities 
(Figure 9c). 
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c. Joint location histograms 
 
When a source characteristic, such as location, is defined by more than one 
parameter, such as x and y, more insight can be gleaned by the inspection of 
joint histograms. Presented in Figure 10 and Figure 11 are joint histograms of 
probability of source location for both x and y, superimposed on a map including 
the real source location (the red triangle) and the sensor locations (the four green 
diamonds), for the two experiments. Shading indicates the joint probability of a 
particular cell being the source location; the more intense blues represent higher 
probability.  
 
In the time-resolution experiment (Figure 10), the joint probability distributions 
based on data from the 10-minute and 60-minute resolution sensor networks 
clearly illustrate that these networks cannot distinguish between two clusters of 
possible source locations: one band includes the correct location, and another 
band to the north includes a peak at the wrong location. The 10-minute resolution 
network has an especially strong peak at an incorrect location (x=343, y = 6481) 
that is weighted more strongly than the peak at the correct location. Only 
reconstruction based on the 5-minute resolution sensor network correctly 
emphasizes the southern band, which encompasses the true source location, 
although it does include both bands. 
 
In the detection-limit threshold experiment (Figure 11), the advantage of the low-
detection-limit network is obvious. In the joint histogram for the expensive 
network, only a few locations are highlighted, and those locations are very close 
to, within 500m of, the actual source, with some upwind uncertainty (Figure 11a). 
The network composed of sensors with a moderate detection limit cannot 
distinguish between two clusters of possible source locations: one band that 
includes the correct location, and another band to the north that includes a peak 
at the wrong location. The moderate network identifies an especially strong peak 
at an incorrect location (x=343, y = 6481) that is weighted more strongly than the 
peak at the correct location (Figure 11b). Finally, the high-detection-limit network 
(Figure 11c) cannot reduce the infinite range of possible source locations beyond 
identifying that the source location is not immediately upwind of the sensors, as 
noted by the white areas (indicating zero probability) upwind of the sensors. The 
rest of the domain consists of possible source locations, indicating that this 
sensor network provides no information at all to decision-makers seeking to 
understand the characteristics of the source of an atmospheric release of this 
magnitude.  
 

d. Release rate histograms 
 
When identifying the source of an unknown atmospheric release, the magnitude 
of the release is often an important parameter. Knowing the size of the source 
term can guide emergency-response actions, such as determining whether 
evacuation or sheltering-in-place is appropriate. The size of the source term is 
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also important for post-release cleanup efforts. An ideal sensor network, coupled 
with event reconstruction methodologies, should therefore be able to quantify the 
size of a detected atmospheric release. Histograms of the release rate 
reconstructions for these two experiments appear in Figure 12 and Figure 13. 
 
Inspection of the release rate histogram clearly indicates the problematic nature 
of reconstruction with very coarse time-resolution instruments (Figure 12). The 
histogram based on 60-min sensor data (Figure 12c) is very flat, filling almost the 
entire range of release rates considered. Both the 10-min (Figure 12b) and the 5-
min (Figure 12a) sensor data narrow the field of possibilities to acceptable limits. 
The 10-min sensor data reconstruction indicates a slight peak in probability at the 
correct release rate, although the determination of the “best” sensor array should 
not be based on the histogram of one quantity alone, but on the aggregate 
evaluation of all desired source parameters, as available in the composite plume. 
 
In the detection-limit experiment, the least expensive network again fails to 
provide useful information, filling almost the entire range of release rates 
considered (Figure 13c). The moderate network indicates a slight peak in 
probability at the correct release rate (Figure 13b), although this release rate 
peak corresponds to an incorrect location, as discussed above in Figure 11b.  
Surprisingly, the reconstruction based on data from the expensive network 
cannot precisely identify the strength of the source (Figure 13a) as well as it 
identifies the location of the source. Quantification of the utility of different sensor 
networks, via articulation of the networks’ capabilities, would be helpful 
information for decision-makers. 
 

e. Composite and aggregate plume predictions 
 
A key piece of information for a decision-maker choosing between sensor 
networks is a composite plume, a reconstruction of the original plume based only 
on the data provided from the sensors and the forward model via the Bayesian 
stochastic inversion. This composite summarizes the posterior distribution of all 
possible source characteristics, weighting each source characteristic (here, X 
and R) by their probability of occurring as determined by the reconstruction (and 
seen in the histograms presented herein). Because the refinement of the 
reconstruction is determined by the characteristics of the sensor network, this 
measure of network performance provides a quantitative means of evaluating the 
utility of a given sensor network.  
 
Composite plumes are generated by aggregating together all runs from the 
forward model, based on the Xn and Rn tested during the reconstruction. At each 
grid cell in the forward model’s domain, at each time step simulated, there exists 
a distribution of atmospheric concentrations due to the dispersion predicted by 
the forward model based on each Xn and Rn. A plume dispersion plot consisting 
of the total concentration expected in each cell, normalized by the total number N 
of Xn and Rn that contributed to that concentration, would create an aggregate 
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plume. This aggregate plume representation does not explicity incorporate the 
probabilistic information obtained via the event reconstruction. To incorporate the 
probabilistic information, a confidence threshold level is defined by the decision-
maker. (In this study, the 90% confidence level is utilized.) The composite plume 
indicates, for each cell, that the reconstruction based on the sensor data is 90% 
confident that concentrations at that cell are above a certain threshold.  
 
Composite plumes for the detection-limit experiment are shown in Figure 14. The 
composite plume from the reconstruction based on the low-detection-limit sensor 
network (Figure 14a) is able to reproduce both the finely-structured stochastic 
nature of the plume edges and a high-concentration contour (outlined in black) 
that is also evident in the original plume (Figure 14d). The reconstruction based 
on the moderate-detection-limit sensor network (Figure 14b) can also reproduce 
the general shape of the original plume. The reconstructed composite plume in 
Figure 14b is also broader than the original and includes the “alternate” source to 
the north of the real source, potentially providing misleading information. Finally, 
the reconstruction using the high-detection limit sensors, shown in Figure 14c, 
provides minimal useful information to a decision-maker, failing to include the 
real source location or identify a high-concentration-level contour (as represented 
by the black line seen in Figure 14a, b, or d). The only information provided in 
Figure 14c is that a release may have happened somewhere in the domain of 
interest and that it affected the two downwind sensors at this timestep; no 
resolution of the features of the plume is possible. 
 
The composite plume can be very useful for a decision-maker seeking to 
determine how to utilize sensors to protect an asset. Numerical experiments such 
as these, which incorporate sensors with different characteristics (detection 
thresholds, time resolution, false-alarm frequency, and expense), along with 
likely release scenarios, can quantitatively illustrate what information different 
types of networks would provide in the case of an atmospheric release of 
hazardous materials. In the detection-limit experiment shown above, the 
decision-maker would weigh the utility of defining a high-concentration contour 
(outlined in black in Figure 14, which could correspond with a Protective Action 
Guideline), available from the low-detection-limit and moderate-detection-limit 
networks, against the higher cost of the low-detection-limit network. 
 

5. Conclusions 
 
Sensor networks must be designed to provide enough quantitative information 
about an event to reduce uncertainty in emergency response. We have 
demonstrated the application of an event reconstruction technology system to 
designing sensor networks for detecting and responding to atmospheric releases 
of hazardous materials. This system, developed at Lawrence Livermore National 
Laboratory, integrates observations with transport and dispersion models via 
Bayesian stochastic sampling methodologies to characterize the sources of 
atmospheric releases of hazardous materials. The event reconstruction 
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methodology identifies source characteristics that are most consistent with the 
observed data, and then can provide an ultimate prediction, or composite plume, 
describing likely affected areas. This ultimate prediction is a composite of all the 
likely sources. In a real event, it can guide emergency responders more 
effectively than a single forward prediction from a single estimate of source 
characteristics as it provides a measure of uncertainty in source characterization 
and the result of the release of hazardous material. Before an event, this 
quantitative measure of the reduction in uncertainty, or benefit of a given 
network, can be utilized by policy makers to determine the cost/benefit of various 
networks. 
 
Herein we present two numerical experiments demonstrating the utility of the 
event reconstruction methodology for sensor network design. Both experiments 
are loosely based on the Copenhagen tracer experiment (Gryning, 1981; Gryning 
and Lyck, 1984), but numerical sensor network design experiments require only 
climatological weather data, a dispersion model, and specifications of the types 
of sensors being considered – no actual tracer experiment data is required. In the 
present study, data from each network was provided to the event reconstruction 
system in order to identify the location and magnitude of a 1.5-hour release of a 
neutrally-buoyant gas in a 6km x 6 km suburban area. 
 
In the first set of experiments, only the time resolution of the sensors varies 
between the three reconstructions. The most “expensive” sensor network, which 
provided data every five minutes (as compared to every ten minutes – 
“moderately-priced” or every sixty minutes – “inexpensive” – over this 1.5-hour 
release), offers only a few advantages over the moderately-priced network when 
attempting to reconstruct the location of the source explored here. Utilizing data 
from either the “moderate” or the “expensive” network, the event reconstruction 
methodology could identify the source location of the release within 5km, and 
could identify the magnitude of the source within 25%.   
 
The second set of experiments presented herein explore the significance of the 
sensors’ detection limit, which can have a significant impact on sensor cost. All 
sensors report data every ten minutes. The “expensive” network had a very low 
detection limit, and could distinguish data within a range of six orders of 
magnitude. The “moderate” network could identify data within a range of three 
orders of magnitude, while the “inexpensive” network could identify data within 
one order of magnitude. The upper limit, or saturation level, of the instruments in 
all three networks was identical. In this set of experiments, the expensive 
network can most clearly define the source location and source release rate.  
The other networks provide data insufficient for distinguishing between two 
possible clusters of source locations. When the reconstructions from all networks 
are aggregated into a composite plume, a decision-maker can distinguish the 
network that best suits needs. Reconstructions from both the expensive network 
and the moderately-priced network can reproduce certain high-threshold 
contours of atmospheric concentrations from the release considered here. 
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However, because of the limited sensitivity of the moderately-priced network, 
reconstruction from that network incorrectly predicts effects of the release in 
regions that would not be affected. A decision-maker could thus weigh the 
potential false-positive risk against the cost savings of that network. 
 
The experiments presented herein have explored only a single type of release 
and a single meteorological scenario, in order to demonstrate the application of 
event reconstruction to sensor network design. More complete sensor network 
studies would consider multiple climatological conditions (i.e. wind speed, wind 
direction, atmospheric stability) representative of the region of interest. A range 
of possible source magnitudes may also be explored to ensure that the network 
would provide useful composite plumes in most likely scenarios.  
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8. Figures 

 
 

 
Figure 1: Vertical profiles of wind speed (solid line) and wind direction (dashed line) for the 
three hours relevant to these simulations 

 
 

 

 
Figure 2: The source (red triangle) and sensors (green diamonds) used in this study. The 
winds, as noted in Figure 1, are from the west. 
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Figure 3: Weighting of concentrations calculated for cells including and around a sensor 
(indicated with cross). 
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a)  b)  

c)  
Figure 4: Convergence metrics for the time-resolution study using a) the five-minute 
network, b) the ten-minute network, c) the 60-minute network 
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a)  b)  

c)  
Figure 5: Convergence metrics for the sensor-sensitivity study using a) the low-threshold 
network, b) the moderate-threshold network, c) the high-threshold network  
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a)  b)  c)  
Figure 6: Histograms for y-location for simulations with a) 5-minute b) 10-minute, c) 60-
minute resolution sensors. 

 

a)  b)  c)  

Figure 7: Histograms for y-location for simulations with a) low-threshold, b) moderate-
threshold, and c) high-threshold sensors. 

 
 
 
 
 
 

a)  b)  c)  
Figure 8: Histograms for x-location for simulations with a) 5-minute b) 10-minute, c) 60-
minute resolution sensors. 

 
 

a)  
b)  

c)  

Figure 9: Histograms for x-location for simulations with a) low-threshold, b) moderate-
threshold, and c) high-threshold sensors.
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a)  b)  

c)  
Figure 10: Joint histogram for x and y location for simulation with sensors with a) 5-
minute, b) 10-minute, and c) 60-minute time resolution 
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a)  b)  

c)  
Figure 11: Joint histogram for x and y location for simulation with sensors with a) low, b) 
moderate, and c) high thresholds. Darker blues indicate higher probability locations. 
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a)  b)  c)  
Figure 12: Histogram for release rate for simulation with sensors with a) 5-minute, b) 10-
minute, and c) 60-minute time resolution 

 
 

a)  b)  c)  

Figure 13: Histogram for release rate for simulation with sensors with a) low, b) moderate, 
and c) high detection limits 
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a)  b)  

c)  d)  
Figure 14: Composite plumes with logarithmic color contours, generated from a) the low-
detection level , b) the moderate-detection level, and c) the high-detection level sensor 
networks. Colored contour levels indicate the magnitude of atmospheric concentrations in 
which a decision-maker can have 90% confidence. Highest concentrations are in yellow 
and light orange; lower concentrations are in red and dark red. Note that the 
reconstruction with the high-detection-level network c) provides confidence only that half 
of the domain will experience concentrations above a low level. Plume d) represents the 
original plume, from which the data for the reconstruction were generated. Note that both 
the reconstructions using the low-detection limit instruments, a), and the moderate-
detection limit instruments, b), can reproduce the high-concentration contour of 1000 
ng/m3, outlined in a), b), and d) with a solid black line. Note also in b) that the plume 
extends further in the north-south direction to encompass the probability that the source 
might be at a second alternate location to the north of the real location.
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9. Appendix A – adapt.nml, observ.met, stnloc.met files for the meteorology 
used in this example 

a. adapt.nml 
 
 *** adapt.nml automatically generated on 19-Aug-2004 08:53:44 via code written by 
Michael Dillon on 5-21-04 
 
 
 &adapt_control 
  flag_debug = .true. 
 / 
 
 &adapt_grid 
  file_met_grid     = "../main_grd_copenhagen.nc"  
  opt_grid_file     = "gridgen" 
 / 
 
 *** Beginning adapt parameters for met time1979JUL19_100000 
 
 &adapt_metdata 
  file_met_field     = "met_field_1979JUL19_100000.nc" 
  opt_src_obs        = "ascii2" 
  opt_src_field      = "none" 
  file_src_obs       = "observ.met" 
  file_src_station   = "../stnloc.met" 
  flag_station_km    = .true. 
  nmethod            = 2 
 / 
 
 &adapt_field2D 
  hgt_vert_coord         = "zAGL"  
  hgt_boundary_layer     = 2090 
  hgt_geostrophic_layer  = 2090 
  z0                     = 0.6000000  
  inv_monin_obukhov_len  = -2.617801e-003 
  friction_velocity      = 7.700000e-001 
 / 
 
 &adapt_method 
  opt_wind_horz       = "spddir" 
  flag_use_missing_wind = .true. 
  opt_met_type          = "wind2d" 
  obs_date_time         = "1979JUL19_100000" 
  blend_exp             = 0.100000   
  flag_upr_in_sl        = .false. 
  flag_twr_local_only   = .false. 
  flag_mc_adjust        = .false. 
  met_x_border          = 100000.0 
  met_y_border          = 100000.0 
  blend_max_veer        = 180 
  sl_pwr_exp            = 0.1900000 
 / 
 
 &adapt_mc_adjust 
 / 
 
 &adapt_method 
  opt_method = "turb"   
 / 
 
 &adapt_turbulence 
  sigmav_tavg       = 3600 
  sigmav_tavgo      = 3600 
  sigmav_t_lagran_h = 400 
  turb_param_h      = "sigmav_simthry" 
  sigmav            = 1.71 
  sigmav_meas_hgt   = 115 
  turb_param_z      = "simthry" 
  sim_kz_c          = 4 
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  sim_kz_trop       = 0.01 
 / 
 
 *** Beginning adapt parameters for met time1979JUL19_110000 
 
 &adapt_metdata 
  file_met_field     = "met_field_1979JUL19_110000.nc" 
  opt_src_obs        = "ascii2" 
  opt_src_field      = "none" 
  file_src_obs       = "observ.met" 
  file_src_station   = "../stnloc.met" 
  flag_station_km    = .true. 
  nmethod            = 2 
 / 
 
 &adapt_field2D 
  hgt_vert_coord         = "zAGL"  
  hgt_boundary_layer     = 2090 
  hgt_geostrophic_layer  = 2090 
  z0                     = 0.6000000  
  inv_monin_obukhov_len  = -2.617801e-003 
  friction_velocity      = 7.700000e-001 
 / 
 
 &adapt_method 
  opt_wind_horz       = "spddir" 
  flag_use_missing_wind = .true. 
  opt_met_type          = "wind2d" 
  obs_date_time         = "1979JUL19_110000" 
  blend_exp             = 0.100000   
  flag_upr_in_sl        = .false. 
  flag_twr_local_only   = .false. 
  flag_mc_adjust        = .false. 
  met_x_border          = 100000.0 
  met_y_border          = 100000.0 
  blend_max_veer        = 180 
  sl_pwr_exp            = 0.1900000 
 / 
 
 &adapt_mc_adjust 
 / 
 
 &adapt_method 
  opt_method = "turb"   
 / 
 
 &adapt_turbulence 
  sigmav_tavg       = 3600 
  sigmav_tavgo      = 3600 
  sigmav_t_lagran_h = 400 
  turb_param_h      = "sigmav_simthry" 
  sigmav            = 1.71 
  sigmav_meas_hgt   = 115 
  turb_param_z      = "simthry" 
  sim_kz_c          = 4 
  sim_kz_trop       = 0.01 
 / 
 
 *** Beginning adapt parameters for met time1979JUL19_120000 
 
 &adapt_metdata 
  file_met_field     = "met_field_1979JUL19_120000.nc" 
  opt_src_obs        = "ascii2" 
  opt_src_field      = "none" 
  file_src_obs       = "observ.met" 
  file_src_station   = "../stnloc.met" 
  flag_station_km    = .true. 
  nmethod            = 2 
 / 
 
 &adapt_field2D 
  hgt_vert_coord         = "zAGL"  
  hgt_boundary_layer     = 2090 
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  hgt_geostrophic_layer  = 2090 
  z0                     = 0.6000000  
  inv_monin_obukhov_len  = -2.617801e-003 
  friction_velocity      = 7.700000e-001 
 / 
 
 &adapt_method 
  opt_wind_horz       = "spddir" 
  flag_use_missing_wind = .true. 
  opt_met_type          = "wind2d" 
  obs_date_time         = "1979JUL19_120000" 
  blend_exp             = 0.100000   
  flag_upr_in_sl        = .false. 
  flag_twr_local_only   = .false. 
  flag_mc_adjust        = .false. 
  met_x_border          = 100000.0 
  met_y_border          = 100000.0 
  blend_max_veer        = 180 
  sl_pwr_exp            = 0.1900000 
 / 
 
 &adapt_mc_adjust 
 / 
 
 &adapt_method 
  opt_method = "turb"   
 / 
 
 &adapt_turbulence 
  sigmav_tavg       = 3600 
  sigmav_tavgo      = 3600 
  sigmav_t_lagran_h = 400 
  turb_param_h      = "sigmav_simthry" 
  sigmav            = 1.71 
  sigmav_meas_hgt   = 115 
  turb_param_z      = "simthry" 
  sim_kz_c          = 4 
  sim_kz_trop       = 0.01 
 / 
 
 *** Beginning adapt parameters for met time1979JUL19_130000 
 
 &adapt_metdata 
  file_met_field     = "met_field_1979JUL19_130000.nc" 
  opt_src_obs        = "ascii2" 
  opt_src_field      = "none" 
  file_src_obs       = "observ.met" 
  file_src_station   = "../stnloc.met" 
  flag_station_km    = .true. 
  nmethod            = 2 
 / 
 
 &adapt_field2D 
  hgt_vert_coord         = "zAGL"  
  hgt_boundary_layer     = 2090 
  hgt_geostrophic_layer  = 2090 
  z0                     = 0.6000000  
  inv_monin_obukhov_len  = -2.617801e-003 
  friction_velocity      = 7.700000e-001 
 / 
 
 &adapt_method 
  opt_wind_horz       = "spddir" 
  flag_use_missing_wind = .true. 
  opt_met_type          = "wind2d" 
  obs_date_time         = "1979JUL19_130000" 
  blend_exp             = 0.100000   
  flag_upr_in_sl        = .false. 
  flag_twr_local_only   = .false. 
  flag_mc_adjust        = .false. 
  met_x_border          = 100000.0 
  met_y_border          = 100000.0 
  blend_max_veer        = 180 
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  sl_pwr_exp            = 0.1900000 
 / 
 
 &adapt_mc_adjust 
 / 
 
 &adapt_method 
  opt_method = "turb"   
 / 
 
 &adapt_turbulence 
  sigmav_tavg       = 3600 
  sigmav_tavgo      = 3600 
  sigmav_t_lagran_h = 400 
  turb_param_h      = "sigmav_simthry" 
  sigmav            = 1.71 
  sigmav_meas_hgt   = 115 
  turb_param_z      = "simthry" 
  sim_kz_c          = 4 
  sim_kz_trop       = 0.01 
 / 
 

b. observ.met 
 
METDATASET '1979JUL19_100000' 
SFC 
'TV TWR'     236.7     4.60 
'TV TWR2'     -1.0     8.53 
'TV TWR3'     253.3     9.73 
'TV TWR4'     253.3     9.90 
UPR 
'TV TWR'  60    -1.0     8.53 
'TV TWR'  120   253.3     9.73 
'TV TWR'  200   253.3     9.90 
 
 
METDATASET '1979JUL19_110000' 
SFC 
'TV TWR'     246.7     4.93 
'TV TWR2'     -1.0     8.62 
'TV TWR3'     253.3     9.55 
'TV TWR4'     258.3     10.67 
UPR 
'TV TWR'  60    -1.0     8.62 
'TV TWR'  120   253.3     9.55 
'TV TWR'  200   258.3     10.67 
 
 
METDATASET '1979JUL19_120000' 
SFC 
'TV TWR'     251.7     5.68 
'TV TWR2'     -1.0     10.58 
'TV TWR3'     256.7     11.18 
'TV TWR4'     265.0     11.45 
UPR 
'TV TWR'  60    -1.0     10.58 
'TV TWR'  120   256.7     11.18 
'TV TWR'  200   265.0     11.45 
 
 
METDATASET '1979JUL19_130000' 
SFC 
'TV TWR'     240.0     5.60 
'TV TWR2'     -1.0     9.70 
'TV TWR3'     260.0     10.80 
'TV TWR4'     260.0     10.80 
UPR 
'TV TWR'  60    -1.0     9.70 
'TV TWR'  120   260.0     10.80 
'TV TWR'  200   260.0     10.80 
 

c. stnloc.met 
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SFC 
'TV TWR'      342.580     6179.610     10 
'TV TWR2'     342.580     6179.610     60 
'TV TWR3'     342.580     6179.610     120 
'TV TWR4'     342.580     6179.610     200 
UPR 
'TV TWR'      342.580     6179.610 
 

 
10. Appendix B – the .pyin file for the 60m resolution reconstruction 

 
# File: four_60mres.pyin 
# 
# Input file for mcmc_app_copenhagen, generated automatically by Julie 
# 
################################################################################ 
# Tells python to look for .py files in the current (working) directory. 
import os 
 
from mcmc_app.mcmc_drivers import make_target_sample 
from mcmc_app.misc         import make_proc_grp 
from mcmc_app.seedmaker    import SeedMaker 
 
# Maximum number of iterations 
itermax = 5000 
  
# Number of iterations for burn-in (used only for postprocessing 
# or convergence monitoring purposes) 
burn_in = 200 
  
# Number of independent sequences 
num_seqs = 4 
  
# Number of processors per forward model 
# ??? Problem: Allow this to be set to not-1, but degrade gracefully 
# ??? in serial mode. 
num_procs_per_mod = 32 
  
# Number of processors per sequence 
# (total number of processors will be equal to num_seqs times this value. 
# (note: for mpi job, r.h.s. must be integer because it is parsed by mpi script) 
num_procs_per_seq = 1 
  
# Processor group for mpi jobs; can be set to None for non-mpi jobs 
#proc_grp = main_driver.make_proc_grp(num_seqs, num_procs_per_seq) 
proc_grp = make_proc_grp(num_seqs, num_procs_per_seq) 
 
  
# Seed generator ----------------------- 
# Creates different seeds for different chains, even if they are running 
# on different processors 
seed = 38895 
seed_generator = SeedMaker(seed, itermax, num_seqs, proc_grp=proc_grp) 
 
# MCMC algorithm ----------------------- 
  
synthetic_data = { 
    # required input: 
    'class_name'  : 'LODI_mcmc_et.sampler.ExampleSampler', 
    # application specific input: 
    'step_size_xy' : 1.0, 
    'step_size_z' : 1.0, 
    'step_size_q' : 1.0, 
    # for this example the base state consists of (x,y) with 
    # that are gaussian with following means and sigma's 
    'x_mean' : 342580.0,   
    'x_sigma' : 1., 
    'x_min' : 342577.0,  
    'x_max' : 342582.0, 
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    'y_mean' : 6179610.0,  
    'y_sigma' : 1., 
    'y_min' : 6179607.0, #4704237.0, 
    'y_max' : 6179612.0, #4705417.0, 
    'q_mean' : 3.3e+09,  
    'q_sigma' : 1.e+07, 
    'q_min' : 3.28e+09, #0.07779, 
    'q_max' : 3.32e+09 #0.07781 
} 
 
 
base_sampler_input = {  
    # required input:  
    'class_name'  : 'LODI_mcmc_et.sampler.ExampleSampler',  
    # application specific input:  
    'step_size_xy' : 0.1,  
    'step_size_q' : 0.1,  
    # for this example the base state consists of (x,y) with  
    # that are gaussian with following means and sigmas  
    'x_mean' : 345580.0,  
    'x_sigma' : 10000.,  
    'x_min' : 340580.0,   
    'x_max' : 350580.0,   
    'y_mean' : 6179610.0,  
    'y_sigma' : 10000.,  
    'y_min' : 6174610.0,   
    'y_max' : 6184610.0,   
    'q_mean' : 3.2e+09,  
    'q_sigma' : 3.e+09,   
    'q_min' : 1.0e+4,  
    'q_max' : 1.0e+15  
}  
  
# Make the target state (synthetic truth) using the base sampler  
# (not needed if not used by log_like_fun_input, below)   
target_sample = make_target_sample(synthetic_data, seed_generator) 
 
class LODINmlTemplate :   
    def __init__(self) :  
           
        self.template_lines = (  
      '&prob_setup',          
      '    title           = " Copenhagen Experiment - IOP10 " ',  
      '    tstart_str      = "1979JUL19_103800"',  
      '    tstop_str       = "1979JUL19_123800"',  
      '    dt_part_str     = "02:00:00"',  
      '    nbins           = 1',  
      '    nsrc            = 1',  
      '    num_met_times   = 3',   
      "    met_time_strs = ", 
               '              "1979JUL19_100000"', 
               '              "1979JUL19_110000"', 
               '              "1979JUL19_120000"', 
      '     dt_dump_str    = "0::0:0:0"',  
      '     dt_min         = 0',  
      '     dt_fact_adv    = 1',  
      '     dt_fact_dif    = 1',  
      '     dt_limit       = 3600',  
      '     dz_dep         = 20',   
      '     met_format     = "arac"',   
      '     out_bin_ascii  = .false.',  
      '     out_part_ascii = .false.',  
      '     rd_grid        = "gridgen"',  
      '     rdm_dist       = "nongauss"',  
      '     reflect        = "vertical"',  
      '     solver_id      = "rk2"',  
      ' /',  
      '',  
      '&thist_param',  
      ' /',  
      '',  
      '&src_param',  
      '    source_id      = "Source  1"',  
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      '    max_num_part   = 10000',  
      '    species        = "SF6"',  
      '    mass_distrib   = "table"',  
      '    m_bin_fract    = 1.0',  
      '    m_bin_diam_max = 0.0',  
      '    m_bin_diam_min = 0.0',  
      '    nset_dep_vel   = 0.0000000E+00',  
      '    geom_time_strs = "1979JUL19_105000"',  
      '    geom_type      = 2  ',  
      'key_x_pt', #'    mean_x         =    342580.0',  
      'key_y_pt', #    mean_y         =    6179610.',  
      '    std_x          =    1.000000',  
      '    std_y          =    1.000000',  
      '    cutoff_dx_min  =    2.500000',  
      '    cutoff_dy_min  =    2.500000',  
      '    cutoff_dx_max  =    2.500000',  
      '    cutoff_dy_max  =    2.500000',  
      '    mean_z         =    10.00000',  
      '    std_z          =    1.000000',  
      '    cutoff_dz_min  =    2.500000',  
      '    cutoff_dz_max  =    2.500000',  
      '    er_time_strs   = "1979JUL19_105000      1979JUL19_122000"',  
      'key_emiss_rates', #    emiss_rates    =    3.200000e+009      0.0000000E+00',  
      '    er_units_type   = "mass"',  
      '    decay_param     = "none"',  
      '    half_life       = 0.0',  
      '    lambda          = 0.0',  
      '    decay_chain     = .false.',  
      '    start_time_str  = "1979JUL19_105000"',  
      '    stop_time_str   = "1979JUL19_122000"',  
      '    dt_hold_str     = "0::0:0:0"',  
      '    source_model    = "neutral"',  
      '    src_generation_method = "new"',  
      '    src_agl_flg     = .true.',  
      ' /',   
      '',     
      '&bin_param',   
      '    bin_id         = "Bin  1"',  
      '    samp_type      = "average"',   
      '    type           = "air"',   
      '    orientation    = "xy"',  
      '    bin_agl_flg    = .true.',      
      '    position       = 10.0',       
      '    width          = 20.0',   
      '    dt_samp_str    = "0::01:00:00"',  
      '    dt_bin_out_str = "0::01:00:00"',  
      '    source_list    = "Source  1"',  
      '    species_name   = "SF6"',   
      ' /',   
      '',   
      '&turb_param',         
      '    read_adapt_turb = .true.',   
      ' /',   
      '',     
      '&met_param',   
      ' /  ',   
         '',   
         '',   
         '',   
        )     
         
   
    def create_nml(self, state, output_file_name) :  
        # Create the LODI nml file, using a template and the new state  
        # information.  
        file_out = open(output_file_name, 'w')  
   
        q=state.sampler_data['q']  
        for line in self.template_lines:  
            if line == 'key_x_pt':  
                print >>file_out, '   mean_x =', state.sampler_data['x']  
            elif line == 'key_y_pt':  
                print >>file_out, '   mean_y =', state.sampler_data['y']  
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            elif line == 'key_emiss_rates':  
                print >>file_out, '   emiss_rates =', state.sampler_data['q'] 
            else:  
                print >>file_out, line  
   
        file_out.flush() 
        os.fsync(file_out.fileno()) 
        file_out.close  
   
        return  
   
   
LODI_nml_template = LODINmlTemplate()  
   
# Lines to put in LODI_files.nml file  
LODI_files_dir = os.getcwd() #+ '/../experiment5' #jkl  
   
LODI_files_nml = (  
    "&grid_name",  
    "   num_m_grids = 1",  
    "   m_grid_name = '" + LODI_files_dir + "/grid/main_grd_copenhagen.nc'",  
    "   c_grid_name = '" + LODI_files_dir + "/grid/conc_grd_copenhagen.nc'",  
    "/",  
    "",  
    "&metfiles",  
    "   grid_num = 1",  
    "   met_file_name = ", 
    '             "' + LODI_files_dir + '/iop10/met_field_1979JUL19_100000.nc"', 
    '             "' + LODI_files_dir + '/iop10/met_field_1979JUL19_110000.nc"', 
    '             "' + LODI_files_dir + '/iop10/met_field_1979JUL19_120000.nc"', 
    "/",  
    "",  
    "&decay_chains_file",  
    '   decay_chains_file_name = "decaychains.dat"',  
    "/",  
    "",  
    "",  
    "",  
)  
   
   
# Likelihood function -----------------------  
# there needs to be one likelihood function for each stage; for this  
# example we have only a single stage  
log_like_fun_1 = {  
    # required input:  
    'class_name'       : 'LODI_mcmc_et.likefun.LogLikeFunA',  
   
    # following is information necessary for parallelization  
    'num_seqs'          : num_seqs,  
    'num_procs_per_mod' : num_procs_per_mod,  
   
    # following is set for random synthetic truth measurements  
    'target_sample'   : target_sample,  
   
    # following is set for random synthetic truth measurements  
    #'measurement_data'   : data,  
   
    # the iteration at which the likelihood function is actually turned on  
    # (for single stage, this should be set to 1; otherwise during staging  
    # the likelihood is ignored until the iteration hits the following value)  
    'start_iter'      : 1,  
   
    # Settings for model_driver  
    'LODI_files_nml' : LODI_files_nml,  # Lines to put in LODI_files.nml file  
    'LODI_nml_template' : LODI_nml_template,  
 
    'sensors' : [  
                  [344629., 6179248., 3600.  ], # Arc 1-22 
#                  [344607., 6180387., 3600.  ], # Arc 1-33 
                  [344509., 6180871., 3600.  ], # Arc 1-38 
#                  [346559., 6179040., 3600.  ], # Arc 2-23 
#                  [346412., 6181080., 3600.  ], # Arc 2-33 
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#                  [345961., 6181562., 3600.  ], # Arc 2-36 
                  [347873., 6178952., 3600.  ], # Arc 3-23 
                  [348468., 6181563., 3600.  ], # Arc 3-32 
#                  [347792., 6182526., 3600.  ], # Arc 3-36 
                  [344629., 6179248., 7200.  ], # Arc 1-22 
#                  [344607., 6180387., 7200.  ], # Arc 1-33 
                  [344509., 6180871., 7200.  ], # Arc 1-38 
#                  [346559., 6179040., 7200.  ], # Arc 2-23 
#                  [346412., 6181080., 7200.  ], # Arc 2-33 
#                  [345961., 6181562., 7200.  ], # Arc 2-36 
                  [347873., 6178952., 7200.  ], # Arc 3-23 
                  [348468., 6181563., 7200.  ] # Arc 3-32 
#                  [347792., 6182526., 7200.  ]  # Arc 3-36 
    ], # Arc 3-36 
   
    # application specific input (e.g. likelihood function parameters) 
    'param_a' : 1.0, 
    'param_b' : 0.0, 
    'lowerbound' : +1, 
    'upperbound' : +4, 
    'sigma_rel' : 0.2, 
    'option' : 1, 
} 
  
log_like_fun_input = [ log_like_fun_1 ] 
  
# Datadumps, plots, monitoring -------------------- 
 
state_out = { 
    'class_name'    : 'LODI_mcmc_et.dumpers.DumpTextC', 
 
    'burn_in'       : burn_in, 
    'starting_iter' : 0, 
    'single_file'   : 1,   # Dump all output for a sequence to one file. 
} 
states_out = [state_out] 
  
# Restart ----------------------- 
  
# Settings to write out restart files. 
restart_write = { 
    'class_name'    : 'mcmc_app.outputs.RestartOutput', 
    'starting_iter' : 1000, 
} 
  
# Settings to read restart files. 
restart_read = { 
    # If following is present and is not 0 or None, use initial state from 
    # restart file 
    'use_restart_new'      : 1, 
    'restart_iter_new'     : 4427,       # Iteration for reading restart 
} 
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Abstract

This report gives an introduction to a Bayesian probabilistic approach to
modeling a dynamic system, with emphasis on stochastic methods for poste-
rior inference. The Bayesian paradigm is a powerful tool to combine observed
data along with prior knowledge to gain a current (probabilistic) understand-
ing of unknown model parameters. In particular, it provides a very natural
framework for updating the state of knowledge in a dynamic system. For com-
plex systems, such updating needs to be carried out via stochastic sampling
of unknown model parameters. An overview is given of the well established
Markov chain Monte Carlo (MCMC) approach to achieve this and of the more
recent sequential Monte Carlo (SMC) approach, which is better suited for dy-
namic systems. Examples are provided, including an application to event
reconstruction for an atmospheric release.
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1 Short Introduction to Bayesian Modeling

We shall now give a brief introduction to the Bayesian paradigm to modeling and in-
ference, along with examples. A good introduction to Bayesian theory and modeling
is “Bayesian Theory” by Bernardo & Smith (1994) and “Bayesian Data Analysis”
by Gelman et al. (2004).

1.1 Basic Notation

Let X and Y be two random variables and denote by:

p(Y ) = the probability distribution of Y .

p(X, Y ) = the joint probability distribution of X and Y .

p(X |Y ) = the probability distribution of X conditional on Y .

We shall use the same notation for a continuous random variable, in which case p(·)
is referring to a continuous density function, and for a discrete random variable,
in which case p(·) is referring to a probability mass function. In addition, we shall
not in general distinguish between a (unknown) random variable and a particular
value it can take; hence, we use p(Y ) to mean both the probability distribution of
Y or if Y is known (observed) the probability distribution of Y evaluated at that
particular observed value.1 In the case where we need to distinguish between the
two, we write p(Y = y) to mean the probability distribution of the random variable
Y evaluated at the value y. Hence, if Y is a discrete random variable, p(Y = y) is
the probability of Y = y, while if Y is a continuous random variable, p(Y = y) is
the probability density function of Y evaluated at y.

There are few basic principles that are used repeatedly in this document:

(1) If the random variables X and Y are independent, then p(X, Y ) = p(X)p(Y ).

(2) Given the joint distribution of X and Y , the marginal distribution of Y is
given by integrating over X,

p(Y ) =

∫
X

p(dX, Y ), where X ∈ X .

If X is a discrete random variable with possible values x1, . . . , xn, then p(Y ) =∑n
i=1 p(X = xi, Y ).

(3) We have the following relationship between the joint distribution, the condi-
tional distribution, and the marginal distribution:

p(X, Y ) = p(X |Y )p(Y ) = p(Y |X)p(X).

1This is a slight abuse of notation, but has become an accepted practice in statistical literature,
particularly in Bayesian text.

1



Johannesson, Hanley, and Nitao Dynamic Bayesian Models via Monte Carlo

1.2 Bayes’ Theory

Reverend Thomas Bayes’ (1702–1761) theory simply states how one can relate the
probability of an event X occurring, conditionally on the fact that an another event
Y has occurred, to the probability of event Y occurring, conditionally on the fact
that event X has occurred. Bayes’ theory can be written as

p(X |Y ) =
p(Y |X)p(X)

p(Y )
∝ p(Y |X)p(X).

In above, one can think of X as representing possible model configurations (pa-
rameters) and Y as observed data. Then p(Y |X) describes, in a probabilistic way
how the observed data Y is linked to a given model configuration X, and is often
referred to as the likelihood or the data model. The distribution p(X) is referred to
as the prior distribution, describing in a probabilistic way possible model configu-
rations X prior to seeing the data Y . The end result is the posterior distribution of
X given the data Y , p(X |Y ), which describes possible model configurations given
(conditional on) the observed data. Given the posterior distribution, one can plot it
(particularly if X is one or two dimensional variable) or compute summary statistics
for the distribution. Popular statistics include:

Mean: E(X |Y ) =

∫
X

Xp(dX |Y ).

Variance: var(X |Y ) =

∫
X
(X − E(X |Y ))2p(dX |Y ).

Mode: arg max
X

p(X |Y ).

One can contrast Bayes’ theory to the more classical approach for inference,
where X is thought to be an unknown deterministic parameter and often estimated
using, for example maximum likelihood;

X̂ = the value of X that maximizes p(Y |X).

This gives a single best model configuration that is in compliance with the data (as
judged by p(Y |X)), while the posterior distribution p(X |Y ) assigns a probability
density over the different model configurations based on their compliance to the
observed data and our prior knowledge of X.

1.3 Examples

We shall now give few examples contrasting the classical and Bayesian approach.

2
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Discrete Probability Space

Assume that our (unknown) state-of-the-system parameter X can only take N differ-
ent, but known values; say x1, . . . , xN . From n independent experiments we observe
the data y1, . . . , yn. The data is assumed to be related to the unknown system
parameter X through a (conditional) probabilistic data model,

p(Y1 = yi |X) ; i = 1, . . . n,

where Yi is a random variable representing the outcome of the i-th experiment. Due
to the independence of the n experiments, the joint distribution of the data, given
the state of the system, is

p(Y = y |X) =
n∏

i=1

p(Y1 = y1 |X)

where Y = (Y1, . . . , Yn) and y = (y1, . . . , yn). Given a prior distribution on X,
p(X = xj); j = 1, . . . , N , the posterior probability distribution of X is given by

p(X = xj |Y = y) =
p(Y = y |X = xj)p(X = xj)∑N

k=1 p(Y = y |X = xk)p(X = xk)
; j = 1, . . . , N,

which is easily computed if one can evaluate p(Yi = yi |X = xj) and p(X = xj) for
i = 1, . . . , n and j = 1, . . . , N . Further, if one has very little information a priori
about which state the system is in, an ideal non-informative prior distribution for
X is p(X = xj) = 1/N ; j = 1, . . . , N . This prior distribution yields

p(X = xj |Y = y) ∝ p(Y = y |X = xj) ; j = 1, . . . , N.

The maximum likelihood (ML) estimator of X is given by the state

x̂ = arg max
x∈{x1,...,xN}

p(Y = y |X = x).

Hence, the ML estimator is the posterior mode (the value x that gives the highest
posterior probability) when X is given a non-informative prior distribution.

Gaussian Distributed Measurements

Assume we have the data y1, . . . , yn that are independently distributed according to
a Gaussian (normal) distribution with mean µ and variance σ2;

yi ∼ Gau(µ, σ2), independently for i = 1, . . . , n,

where “∼ Gau(µ, σ2)” reads “distributed as Gaussian with mean µ and variance
σ2”. Assume further that the variance σ2 is known, but the mean parameter µ

3
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is unknown and our goal is to conduct inference on µ given the data y1, . . . , yn.
Classical statistical analysis gives the ML estimator of µ as

µ̂ = ȳ, where ȳ =
1

n

n∑
i=1

yi.

In the Bayesian framework, assume we assign µ the prior distribution

µ ∼ Gau(ξ, τ 2), ξ and τ 2 known and given.

The posterior distribution of µ, p(µ |y), can be shown to be Gau(M, V ) with

M =

(
ȳ

σ2/n
+

ξ

τ 2

)
V and V =

(
1

σ2/n
+

1

τ 2

)−1

.

The posterior mean can be seen to be a weighted average of the empirical average
ȳ and the prior mean ξ. Note as n gets large (more data sampled), M gets closer
to ȳ, the ML estimator of µ, and the posterior variance gets closer to σ2/n (which
is the variance of ȳ). Similarly, as one lets τ 2 grow larger (yielding effectively a
non-informative prior for µ), the same effect is seen.

Numerical (Physical) Model

Assume we have a deterministic numerical (physical) model that predicts n different
numerical quantities. Let (

F1(θ), . . . , Fn(θ)
)

= F(θ),

be the n predicted output quantities from the numerical model when configured
according to the parameter θ. An experiment is conducted that gives (observed)
measurements y1, . . . , yn of the quantities that the numerical model F (·) aims at
predicting. The observed data is assumed to be related to the model predictions as
follows,

yi = Fi(θ) + εi ; i = 1, . . . , n,

where ε1, . . . , εn are independent Gaussian distributed measurement errors with with
zero mean and a known variance σ2. The data model above can also be written as

yi ∼ Gau(Fi(θ), σ
2) ; i = 1, . . . , n,

yielding a data model p(yi | θ) that is a Gaussian distribution with mean Fi(θ) and
variance σ2.

The ML estimator of θ is given by

θ̂ = arg max
θ

p(y | θ),

4
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where

p(y | θ) =
n∏

i=1

p(yi | θ).

Depending on how computationally involved the numerical model is, and on the
dimension of θ, the above (global) optimization can be difficult to carry out.

Given a prior distribution on θ, p(θ), the posterior distribution of θ is given by

p(θ |y) =
p(y | θ)p(θ)

p(y)
,

where

p(y) =

∫
p(y | θ)p(dθ).

Again, depending on how computationally involved F (·) is and on the dimensional-
ity of θ, evaluating (numerically) the above integral can be prohibitively expensive.
Instead of trying to evaluate the integral, an alternative approach is to generate a
collection of realizations from the posterior distribution and use these samples to
conduct inference (i.e., compute the mean, variance, etc., of the posterior distribu-
tion of θ). Indeed, that is the focus of the remaining portion of this report for the
case where the posterior distribution of interest is of a particular dynamic form.
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2 Dynamic Bayesian Models

We shall now focus on a particular class of probability models that are dynamic by
nature. For this class of models the parameter space of interest is expanding with
time while more data is gathered. Hence, as each new batch of data arrives our
goal is to carry out, or rather update our current probabilistic knowledge of the
system, which at that point includes both “old” and “new” parameters. A good
introduction to dynamic models is “Bayesian Forecasting and Dynamic Models” by
West & Harrison (1997).

2.1 The Basic Definition

Denote by

θt the collection of model parameters associated with time t.

yt the collection of (potential) data available at time t.

The relationship between the data and the model parameters is described proba-
bilistically by the time-evolving data-model (the likelihood),

p(yt |θ1:t) ; t = 1, 2, . . . , (1)

where we have, without loss of generality, assumed discrete and equal-spaced time
points, and where

θ1:t ≡ (θ1, . . . ,θt).

Note that the observed data yt do not only depend on the parameters at time t, θt,
but on the whole time history, θ1:t. The joint distribution of all data observed up
to and including time t is given by

p(y1:t |θ1:t) =
t∏

t′=1

p(yt′ |θ1:t′), (2)

where y1:t ≡ (y1, . . . ,yt).

For Bayesian inference a prior distribution is specified for the model parame-
ters θ1, . . . , θt. Taking advantage of the dynamic nature of the model, the prior
distribution can be written as

p(θ1:t) = p(θ1)p(θ2 |θ1) · · · p(θt |θ1:t−1), (3)

where the prior distribution of the model parameters at each time point is specified
conditional on the model parameters from the previous time points.

We can summarize our dynamic model as:

Data-Model: p(yt |θ1:t)

Parameter-Model: p(θt |θ1:t−1),
(4)
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along with the initial prior distribution p(θ1); t = 1, 2, . . . . It should be noted that
both the data model and the parameter model in (4) can also condition on past
data, yielding the more general model:

Data-Model: p(yt |θ1:t,y1:t−1)

Parameter-Model: p(θt |θ1:t−1,y1:t−1).

However, for the remaining of this document we shall assume (4), but the results
presented do apply to the more general model above.

Our goal is to conduct posterior inference on θ1:t as time evolves and more data
is gathered. Bayes’ theory gives the posterior distribution at time t as

πt(θ1:t) ≡ p(θ1:t |y1:t) ∝ p(y1:t |θ1:t)p(θ1:t). (5)

Using the product form of the likelihood in (2) and the dynamic nature of the
prior in (3), we can write the posterior as (or rather, proportional to) the following
product,

πt(θ1:t) ∝

(
t∏

t′=1

p(yt′ |θ1:t′)

)(
t∏

t′=1

p(θt′ |θ1:t′−1)

)
=

t∏
t′=1

p(yt′ |θ1:t′)p(θt′ |θ1:t′−1),

(6)
where we for convenience define θ1:0 = ∅ (an empty set of parameters), so that
p(θ1 |θ1:0) = p(θ1). The above expression for the posterior hints at an alterna-
tive, sequential expression for the posterior distribution at time t, that is based on
“updating” the posterior distribution from the previous time point, t− 1;

πt(θ1:t) ∝
(
p(yt |θ1:t)p(θt |θ1:t−1)

)
πt−1(θ1:t−1). (7)

One can also derive this posterior updating expression from a purely statistical
argument as follows: Given πt−1(θ1:t−1), our prior knowledge of θ1:t at time t based
on all data up to and including time t− 1 is given by the distribution

πt−1(θ1:t) ≡ p(θ1:t |y1:t−1) = p(θt |θ1:t−1,y1:t−1)p(θ1:t−1 |y1:t−1)

= p(θt |θ1:t−1)πt−1(θ1:t−1),

where we used that θt is independent of the data y1:t−1 given the parameter his-
tory θ1:t−1 (i.e., p(θt |θ1:t−1,y1:t−1) = p(θt |θ1:t−1)). Using this, we can write the
posterior at time t as

πt(θ1:t) = p(yt |θ1:t)πt−1(θ1:t).

Although one can write down the posterior distribution up to a proportionality
constant at each given time point t, using it for inference is altogether another
problem. Computing the proportionality constant can be prohibitively difficult as it
involves a numerical multi-dimensional integral (integrating p(y1:t |θ1:t)p(θ1:t) with
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respect to θ1:t). An alternative is to sample (i.e., generate) realizations from the
(unscaled) posterior distribution and use them for inference (i.e., computing means,
variances, quantiles, etc.). Even if we could compute the missing proportionality
constant, sampling based inference is often the only viable option in summarizing
the posterior distribution, especially in high dimensional settings. This is what we
shall explore in Section 3 and 4, and in particular how one can construct a sampling
procedure that samples from π1(θ1), π2(θ1:2), . . . , in a sequential effective way,
taking advantage of the dynamic nature of the posterior in (7)

2.2 Example: Target Tracking

A classical example of a dynamic model is 2D target tracking. The goal is to track a
moving target and report on its location, xt = (x1t, x2t), and velocity, vt = (v1t, v2t),
at discrete time points t = 1, 2, . . . . A simple dynamic model for θt = (xt,vt) is
given by

xt = xt−1 + 0.5(vt−1 + vt)

vt = vt−1 + δt,

which linearly interpolates the velocity vector between time (t − 1) and t and as-
sumes an auto-regressive model for the velocity vector, where the rate-of-change (the
acceleration) δt is assumed Gaussian with mean zero and known variance-covariance
matrix W. The model can also be written in the matrix form[

xt

vt

]
=

[
1 1
0 1

] [
xt−1

vt−1

]
+

[
0.5
1

]
δt.

For simplicity, assume that the target tracking data consists of (noise corrupted)
position observations, y1,y2, . . . , that are related to the actual location of the target
via

yt = xt + εt,

where εt is a zero mean Gaussian measurement error with variance-covariance matrix
V.

Given an initial Gaussian prior distribution for (x1,v1), a closed-form solution
(the Kalman-filter) exists for updating the posterior distribution at time (t− 1) to
yield the posterior distribution at time t in the form of a Gaussian distribution (see
e.g., West & Harrison, 1997, for an overview). This result depends on the linearity
of both the measurement model and the dynamic model for (xt,vt), along with the
Gaussian assumption made about the measurement errors and the acceleration of
the target.

It is relatively easy to extend the above simple target tracking scenario to a
more complicated one, where the observed tracking data are not directly (linearly)
related to the location of the target and the maneuvering model for the target
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is much more complicated. For such a general model, a closed-form solution for
updating the posterior distribution at each time t is seldom available and one needs
to resort to sampling-based methods for posterior inference.

2.3 Example: Atmospheric Dispersion Modeling with Un-
known Source Characteristics

The goal here is to estimate (probabilistically) the location and release rate history
of a contaminant into the atmosphere using a numerical atmospheric contaminant
dispersion model and relatively few concentration measurements at given sensor
locations. In this simple scenario let

xt ∈ R3 be the location of a point source in the time interval (t− 1, t].

st ∈ R+ be the source strength (release rate) in the time interval (t− 1, t].

θt ≡ (xt, st).

Given the source history θ1:t = (x1:t, s1:t) we use a rather simple Gaussian puff
model, INPUFF (Petersen & Lavdas, 1986), to predict the resulting concentration
of the contaminant. Let

Ĉ(x′, t′) = Ĉ(x′, t′; θ1:t′) be the model predicted contaminant average concentra-
tion in (t′ − 1, t′] at location x′ due to a source with release history given by
θ1:t′ .

For the dispersion model in question, the predicted concentration Ĉ(x′, t′) can be
broken down into additive contributions from each time interval,

Ĉ(x′, t′) =
t′∑

t=1

Ĝxt,t(x
′, t′)st, (8)

where

Ĝx,t(x
′, t′) gives the predicted average concentration in (t′ − 1, t] at x′ due to

a source at location x with a release rate of 1 in (t − 1, t] (and zero outside
(t− 1, t]).

The observed data is assumed to consist of time-averaged concentration mea-
surements at given sensor (monitor) sites. Assuming a network of M sensors at
locations m1, . . . ,mM , let

cj,t = the average observed concentration from the j-th sensor in the time interval
(t− 1, t].
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The observed data is then assumed to be related to the predicted concentration via
the simple data model

p(cj,t | Ĉ(mj, t)) = Gau(Ĉ(mj, t), V (Ĉ(mj, t))
∣∣∞
0

, (9)

where Gau(µ, σ2)
∣∣u
l

denotes a Gaussian (Normal) density with mean µ and variance
σ2 and truncated between l and u (l < u), and V (·) is a known variance function.

The model is then fully specified by giving a prior distribution for the source
location and the release rate history. We shall assume that the source is not moving,
xt = x, but little is know about it’s location. We therefore assign a non-informative
prior to the location,

p(x) ∝ 1 if x ∈ X , 0 otherwise,

where X is the spatial domain of interest. The source release is assumed to start
at an unknown time t∗ ≥ 1 with a vague information of the initial release rate, but
is then assumed to change “smoothly” as time progresses. We formulate this prior
information as following:

p(t∗) =

{
1/t∗max if t∗ ∈ {1, . . . , t∗max},
0 otherwise.

(10)

That is, a flat prior on the initial start-time between t∗ = 1 and t∗ = t∗max. For the
initial release rate, we assume that

pt∗(st∗) = f1(st∗) (11)

where f1(·) is a given prior distribution on positive release and note that s1 = · · · =
st∗−1 = 0. And finally for t > t∗, we assume that

p(st | st−1) = f2(st | st−1) (12)

where f2(· | ·) is a conditional distribution. An example of f1 and f2 are:

f1(·) = Gau(µ1, σ
2
1)
∣∣c+
0

f2(· | st−1) = Gau(st−1, σ
2
2)
∣∣c+
0

,

where the parameters µ1, σ2
1, and σ2

2 are assumed known and recall that Gau(·, ·)
∣∣c+
0

denotes a truncated Gaussian distribution.
Due to how complicated the model is, particularly the dependence of the disper-

sion model on the location parameter x, sampling-based methods need to be used
for posterior inference at each time point t. And this is what we shall now study
for the dynamic model in general.
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3 Markov Chain Monte Carlo (MCMC)

We shall now give a review of the well established Markov chain Monte Carlo
(MCMC) approach for generating realizations from the posterior distribution πt(θ1:t)
in (7); t = 1, 2, . . . . A good practical introduction to MCMC is the volume ”Markov
Chain Monte Carlo in Practice”, edited by Gilks et al. (1996), the book ”Monte
Carlo Strategies in Scientific Computing” by Liu (2001), and the overview paper by
Andrieu et al. (2003).

Our basic goal is to generate realizations, θ
(1)
1:t , . . . ,θ

(N)
1:t from the posterior distri-

bution πt(θ1:t) in (7) for t = 1, 2, . . . . All inference are then conducted using these
realizations. That is, for example if Q(θ1:t) is a function of the unknown parameters,
then its posterior expected value,

E(Q(θ1:t) |y1:t) ≡
∫

Q(θ1:t)πt(dθ1:t),

is approximated by

Ê(Q(θ1:t) |y1:t) ≡
N∑

i=1

(1/N)Q(θ
(i)
1:t).

Basically we have approximated the posterior distribution at time t, πt(θ1:t), by the
empirical distribution function,

π̂N
t (θ1:t) =

N∑
i=1

(1/N)δ(θ
(i)
1:t − θ1:t), (13)

where δ(θ
(i)
1:t − θ1:t) = 1 if θ

(i)
1:t = θ1:t, otherwise 0.

3.1 The Basics of MCMC

The MCMC approach has a long and successful history for non-dynamic models, but
has been shown to be somewhat less appropriate for dynamic models (in its most
general form). However, there are cases when MCMC is well suited for dynamic
models, one being when the main interest is on a single time point given fixed set
of data and as such the model can simply be treated as static.

The MCMC approach generates realization(s) from a Markov chain that has the
posterior distribution πt(θ1:t) as its stationary distribution. This is accomplished

by generating the realization θ
(i)
1:t using the previous realization, θ

(i−1)
1:t along with a

probabilistic proposal mechanism that outlines how this is done. One of the most
popularized MCMC algorithm to generate a chain of size N from πt(θ1:t) is given
in Table 1 and is referred to as the Metropolis-Hastings (M-H) MCMC sampling

algorithm. The proposal distribution qt(θ̃1:t |θ(i)
1:t) in Step A of the M-H algorithm
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is specified by the user and can be very general (see Section 3.4). The acceptance
ratio in Step B of the M-H algorithm is given by the posterior ratio multiplied by
the proposal ratio (or rather divided by the proposal ratio). The inclusion of the
proposal ratio is to correct for “bias” in the proposal distribution; note that if the
proposal distribution is symmertric (unbiased), that is, qt(θ̃1:t |θ(i)

1:t) = qt(θ
(i)
1:t | θ̃1:t),

then the proposal ratio is just equal to 1 and does not enter the expression for the
acceptance ratio.

Table 1: Markov Chain Monte Carlo (MCMC) Algorithm:

The following algorithm describes how to generate realizations from πt(θ1:t) for a
given t (i.e., at a given time point).

Step 0 (Initialization): A starting value θ
(1)
1:t for the Markov chain is proposed.

For i = 1, . . . , N − 1: Use Metropolis-Hasting (M-H) sampler:

Step A (Proposal) Given the i-th step of the Markov chain, θ
(i)
1:t, the next

step is proposed via a proposal distribution;

θ̃1:t ∼ qt(θ̃1:t |θ(i)
1:t). (14)

Step B (M-H Acceptance Ratio): The acceptance ratio,

ρt(θ̃1:t; θ
(i)
1:t) =

πt(θ̃1:t)qt(θ
(i)
1:t | θ̃1:t)

πt(θ
(i)
1:t)qt(θ̃1:t |θ(i)

1:t)
=

p(y1:t | θ̃1:t)p(θ̃1:t)qt(θ
(i)
1:t | θ̃1:t)

p(y1:t |θ(i)
1:t)p(θ

(i)
1:t)qt(θ̃1:t |θ(i)

1:t)
(15)

is computed, along with the acceptance probability

αt(θ1:t; θ
(i)
1:t) = min{ρt(θ̃1:t; θ

(i)
1:t), 1}.

Step C (Selection): Generate u ∼ Uniform[0, 1] and let

θ
(i+1)
1:t =

{
θ̃1:t if u ≤ αt(θ̃1:t; θ

(i)
1:t),

θ
(i)
1:t otherwise.

The efficiency of the M-H algorithm depends on the “quality” of the proposal
distribution in Step A. The proposal distribution can be factored in a fashion similar
to the prior distribution given in (3). That is (suppressing the chain index i),

qt(θ̃1:t |θ1:t) = qt(θ̃1 |θ1:t)qt(θ̃2 | θ̃1, θ1:t) · · · qt(θ̃t | θ̃1:t−1, θ1:t).
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By restricting the proposal of θ̃t′ , t′ = 1, . . . , t, to condition only on parameters
up to and including time t′ (a rather natural restriction given the dynamics of the
model), the above proposal distribution can be written as

qt(θ̃1:t |θ1:t) =
t∏

t′=1

qt(θ̃t′ | θ̃1:t′−1, θ1:t′), (16)

where recall that θ1:0 = ∅.
A typical MCMC proposal algorithm alternates between different type of pro-

posals in a systematic or random fashion with each proposal only modifying a subset
of the parameters. For example, a (sub-)proposal distribution that only modifies
the t-th parameter (the last parameter) can be written as

qt(θ̃1:t |θ1:t) = qt(θ̃t |θ1:t)δ(θ̃1:t−1 − θ1:t−1).

Similar sub-proposal distributions can be created for the other components of the
parameter vector, and the proposal step A in the MCMC Algorithm in Table 1
would alternate between different sub-proposals.

The acceptance ratio (15) can be written as the product,

ρt(θ̃1:t; θ1:t) =
t∏

t′=1

(
p(yt′ | θ̃1:t′)p(θ̃t′ | θ̃1:t′−1)qt(θt′ |θ1:t′−1, θ̃1:t′)

p(yt′ |θ1:t′)p(θt′ |θ1:t′−1)qt(θ̃t′ | θ̃1:t′−1, θ1:t′)

)
, (17)

using the conditional format of the proposal distribution in (16) and the product
format of the posterior in (6). Depending on the proposal distribution, it is not nec-
essarily the case that all the components in the above expression need to evaluated.
For example, if the new proposal θ̃1:t is such that only changes are made to θ̃t′′ ,
where t ≥ t′′ ≥ 1, then only terms with t′ ≥ t′′ in the final product in (17) need to
be evaluated, the other terms cancel out.

There are two characteristics that determine the effective sample size (the sta-

tistical efficiency) of the MCMC realizations θ
(1)
1:t , . . . ,θ

(N)
1:t : the burn-in period and

the chain’s auto-correlation. The burn-in period represents the number of samples
needed at the beginning for the Markov chain to actually reach the state where it is
sampling from the target distribution, πt(θ1:t). These initial samples are discarded
and not used for inference; hence reducing the effective sample size. The second
issue is auto-correlation. Due to the Markovian nature of the algorithm, the realiza-
tions θ

(1)
1:t , . . . ,θ

(N)
1:t are not an independent sample from πt(θ1:t); nearby realizations

can be highly correlated. The amount of auto-correlation in the sample depends
on how well the proposal distribution is able to “mix” the sample and the accep-
tance rate associated with the proposal distribution. If the proposal distribution
alters the chain too little at each step (θ̃1:t too close to θ1:t), the resulting MCMC
sample tends to show high auto-correlation. Similarly, a proposal distribution that
makes large changes at each step typically has a low acceptance ratio and therefore
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stays in the same state for a long period of time, which causes high auto-correlation
in the final sample. The optimal proposal distribution is somewhere in between,
and as a rule of thumb, an acceptance rate around 25% is thought to be good in
multi-dimensional problems (Gelman et al., 2004, page 306) (if higher, the pro-
posal distribution is making changes that are too small while if lower, the proposal
distribution is making changes that are too big).

The main drawback of the MCMC algorithm for dynamic models is it does not
have a natural way of carrying the posterior information available from the sample
θ

(1)
1:t , . . . ,θ

(N)
1:t over to time t + 1, to generate the sample θ

(1)
1:t+1, . . . ,θ

(N)
1:t+1. At time

t + 1 one would simply start a new Markov chain, with πt+1(θ1:t+1) as its targeting
distribution, without taking any direct advantage of the sequential nature of the
posterior distribution at time t + 1, as given by (7). There is one exception to this
that applies to a particular MCMC algorithm, an algorithm that rejuvenates and
extends the MCMC realizations from the previous time point, which we shall now
describe.

3.2 Sequential MCMC via Rejuvenation and Extension

We shall now give a short account of a particular MCMC algorithm that takes
advantage of the MCMC realizations from previous time step. We shall see later
that this MCMC algorithm mirrors (and in many ways inspires) a very similar
Sequential Monte Carlo (SMC) algorithm; see Section 4.3.

Assume at time t−1 we have an MCMC sample θ
(1)
1:t−1, . . . ,θ

(N)
1:t−1 from πt−1(θ1:t−1)

2.
Using this sample we derive the following approximation (as in (13)),

πt−1(θ1:t−1) ' π̂N
t−1(θ1:t−1) ≡

N∑
i=1

(1/N)δ(θ1:t−1 − θ
(i)
1:t−1).

By plugging this approximation in place of πt−1(θ1:t−1) in (7), we derive the following
approximation to the posterior at time t,

πt(θ1:t) ' C × p(yt |θ1:t)p(θt |θ1:t−1)
N∑

i=1

(1/N)δ(θ1:t−1 − θ
(i)
1:t−1)

= C ×
N∑

i=1

p(yt |θ(i)
1:t−1, θt)p(θt |θ(i)

1:t−1)(1/N)δ(θ1:t−1 − θ
(i)
1:t−1),

(18)

where C is an unknown normalizing constant. The approach we take here is to
generate samples from the approximation above instead of πt(θ1:t). By taking this
approach, we have restricted the to-be-generated realizations from the posterior
at time t to be of the form θ1:t = (θ

(I)
1:t−1, θt), where θ

(I)
1:t−1, I ∈ {1, . . . , N}, is a

2Assume also that this sample has been corrected for a burn-in period
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realization from the posterior at time t− 1. Hence, we are simply rejuvenating and
extending the past realizations based on the information content of the new data, yt.
The drawback of this approach is that if the new data is highly informative and not
very much in line with what the previous data have indicated, the past posterior
sample might not be rich enough (e.g., not large enough) to include a sufficient
number of past realizations that are in a good agreement with the new data. Hence,
taking this approach usually requires a large number of MCMC realizations (a large
N), and even if that is satisfied, it often yields an impoverished sample for conducting
inference on θt′ when t− t′ is large.

A well known trick to sample from a mixture of distributions, like the one in (18),
is to augment the parameter space to include the mixture index; work with (θ1:t, I)
instead of only θ1:t where I ∈ {1, . . . , N} is the mixture component index. Define
the following two distributions associated with the augmented parameter (θ1:t, I):

πa
t (θ1:t | I) ≡ C × p(yt |θ(I)

1:t−1, θt)p(θt |θ(I)
1:t−1)δ(θ1:t−1 − θ

(I)
1:t−1),

πa
t (I) ≡ 1/N ; I = 1, . . . , N.

The joint distribution of the augmented parameter (θ1:t, I) is then

πa
t (θ1:t, I) = πa

t (θ1:t | I)πa
t (I)

= C × p(yt |θ(I)
1:t−1, θt)p(θt |θ(I)

1:t−1)δ(θ1:t−1 − θ
(I)
1:t−1)(1/N),

and in particular, the marginal distribution of θ1:t with respect to πa
t (θ1:t, I) is

πa
t (θ1:t) =

N∑
I=1

πa
t (θ1:t | I)πa

t (I) = the mixture in (18).

This suggests that one could construct a MCMC algorithm to sample from πa
t (θ1:t, I)

and then simply drop the index I, yielding a sample from the above marginal dis-
tribution which is equal to the target mixture distribution in (18). The proposal for
this augmented approach (i.e., Step A in Table 1) would be:

Step A (Augmented Proposal)

(1) Sample Ĩ ∼ πa
t (Ĩ) = a uniform distribution on {1, . . . , N}.

(2) Sample θ̃t ∼ qt(θ̃t |θ(Ĩ)
1:t−1,yt).

(3) Let θ̃1:t ≡ (θ
(Ĩ)
1:t−1, θ̃t), and the augmented proposal is (θ̃1:t, Ĩ).

What is particularly noticeable about the above augmented proposal is it does
not depend on θ

(i)
1:t, the previous realization from the Markov chain. Proposal distri-

butions that have this feature are often referred to as independent M-H proposals.
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Since the proposals are independent they can be made in a parallel fashion, as N
independent processes. The augmented proposal can be made slightly more general
by replacing step (1) by the following:

(1’) Sample Ĩ ∼ qt(Ĩ |yt), a discrete proposal distribution on {1, . . . , N}.

Note that this proposal distribution depends on the new data yt, allowing for the
possibility of using the new data to see which realizations from time t− 1 are more
fit to be extended to time t and which are not.

The acceptance ratio (Step B in Table 1) for the augmented proposal is given
by:

Step B (Augmented M-H Acceptance Ratio) Let (θ
(i)
1:t, I

(i)) = (θ
(I(i))
1:t−1, θ

(i)
t , I(i))

be the previous sample from the Markov chain, then

ρt(θ̃1:t, Ĩ; θ
(i)
1:t, I

(i)) =
p(yt |θ(Ĩ)

1:t−1, θ̃t)p(θ̃t |θ(Ĩ)
1:t−1) qt(θ

(i)
t |θ(I(i))

1:t−1,yt)

p(yt |θ(I(i))
1:t−1, θ

(i)
t )p(θ

(i)
t |θ(I(i))

1:t−1) qt(θ̃t |θ(Ĩ)
1:t−1,yt)

.

Due to the augmented independent M-H sampler, the above acceptance ratio
does not include any mixed terms, terms that include both components from the
next proposed state, (θ̃1:t, Ĩ), and the current state, (θ

(i)
1:t, I

(i)). Even though this
is the case, the acceptance process can not made in parallel, as N independent
processes, as in the proposal step3. This is due to what seems to be a rather random
use of the i-th sample to compute the acceptance ratio for the new proposal, and
therefore influencing if the new state will be accepted or not; recall that the i-th
sample had no impact on how the new proposal was generated! One can therefore
ask if it is possible to “adapt” this particular MCMC algorithm such that in can be
easily conducted in parallel? The answer to that is Sequential Monte Carlo (SMC),
which we shall review in Section 4.

3.3 Sequential MCMC via Rejuvenation, Modification, and
Extension

What follows is an outline of how one could modify the above approach to also
propose changes in the parameter history (i.e., propose changes to θ1:t−1), not simply
rejuvenate and extend the previous realizations to time t. However, this extension
results in complications that might in some cases reduce its usefulness.

We replace the augmented proposal step from previous section with the following
step:

3Although, one could compute in parallel p(yt |θ(Ĩ)
1:t−1, θ̃t), p(θ̃t |θ(Ĩ)

1:t−1), and qt(θ̃t |θ(Ĩ)
1:t−1,yt)

for all the N different proposals that can be made in parallel (i.e., at the same time as the proposals
are made), and then use to compute the acceptance ratio when needed.
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Step A (Augmented Proposal 2)

(1) Sample Ĩ ∼ qt(Ĩ |yt), a distribution on {1, . . . , N}.
(2a) Sample θ̃1:t−1 ∼ qt(θ̃1:t−1 |θ(Ĩ)

1:t−1,yt).

(2b) Sample θ̃t ∼ qt(θ̃t | θ̃1:t−1,yt).

(3) Let θ̃1:t ≡ (θ̃1:t−1, θ̃t).

This version of the augmented proposal step both modifies the past (selected)

realization θ
(Ĩ)
1:t−1 and extents it to time t. The proposal distribution in step (2a)

can be taken to be of the sequential form,

qt(θ̃1:t−1 |θ(Ĩ)
1:t−1,yt) =

t−1∏
t′=1

qt(θ̃t′ | θ̃1:t′−1, θ
(Ĩ)
1:t′ ,yt).

Typically we aim only at changing relatively few parameters associated with θ
(Ĩ)
1:t−1

in the proposal (those parameters that are believed to have the largest impact on
the newly observed data yt). As such, many of the sub-proposal distributions above

put θ̃t′ = θ
(Ĩ)
t′ with probability 1.

The main difference (and added complexity) of this approach versus the previ-
ous approach that did not modify the past, is in computing the acceptance ratio
ρ. Instead of computing the acceptance ratio with respect to the mixture approxi-
mation in (18), yielding a approximate sample from the posterior, we compute the
acceptance ratio with respect to the true posterior, hence yielding a sample from
the exact posterior distribution. That is, the mixture approximation is only used to
construct the proposal. We use therefore (15), or (17), to compute the acceptance

ratio, with qt(θ̃1:t |θ(i)
1:t) in (15) given by

qt(θ̃1:t |θ(i)
1:t) = qt(θ̃1:t) = qt(θ̃t | θ̃1:t−1,yt)

N∑
Ĩ=1

qt(θ̃1:t−1 |θ(Ĩ)
1:t−1,yt)qt(Ĩ |yt).

A few comments on evaluating the proposal ratio (15). Since the proposal is derived
by modifying a realization from time t− 1, some of the likelihood and prior calcula-
tions involved have already been carried out at time t− 1. Secondly, evaluating the
proposal distribution qt(θ̃1:t) involves summation from Ĩ = 1 to N over the realiza-
tions from time t− 1, which can be computationally expensive. However, if only a
few of the past parameters are modified, most (if not all except one) of the N terms
in the sum are equal to zero, making it manageable to evaluate the mixture sum.

(For example, if we only modify the component θ
(Ĩ)
t−1 of the selected realization from

time t − 1, then only realizations from time t − 1 which have identical parameter
history from time 1 to t− 2 yield non-zero probability in computing the summation
associated with qt(θ̃1:t).)
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3.4 MCMC Proposal Distributions

Nothing has been said so far on how the proposal distributions (14) of the MCMC

algorithm are specified. In general, the only condition that qt(θ̃1:t |θ(i)
1:t) in (14) needs

to satisfy is the rather natural condition that

qt(θ̃1:t |θ(i)
1:t) > 0 if and only if qt(θ

(i)
1:t | θ̃1:t) > 0.

We shall now briefly mention few approaches that have been used for constructing
proposal distributions.

The Gibbs Sampler.

The Gibbs-sampling approach partitions the parameter vector θ1:t into blocks of
related parameters (e.g., into t blocks with each block given by θt′ ; t′ = 1, . . . , t). A
proposal is then made by changing the parameters of a single block at a time using
the full conditional distribution (see below) of the block’s parameters as the proposal
distribution. To demonstrate, let each parameter block consist of θt′ ; t′ = 1, . . . , t,
and we wish to propose a change to the block indexed by t′ ∈ {1, . . . , t}. The new
proposal, θ̃1:t, is given by

θ̃1:t\t′ = θ1:t\t′ and θ̃t′ ∼ πt(θ̃t′ |θ1:t\t′),

where θ1:t\t′ ≡ {θτ : τ = 1, . . . , t, τ 6= t′} and π(θ̃t′ |θ1:t\t′) is the full conditional

distribution of θ̃t′ , given by

πt(θ̃t′ |θ1:t\t′) = p(θ̃t′ |y1:t, θ1:t\t′).

The acceptance ratio (15) is then given by

ρt(θ̃1:t; θ1:t) =
πt(θ1:t\t′ , θ̃t′)πt(θt′ |θ1:t\t′)

πt(θ1:t\t′ , θt′)πt(θ̃t′ |θ1:t\t′)

=

(
πt(θ1:t\t′)πt(θ̃t′ |θ1:t\t′)

)
πt(θt′ |θ1:t\t′)(

πt(θ1:t\t′)πt(θt′ |θ1:t\t′)
)
πt(θ̃t′ |θ1:t\t′)

= 1.

Hence, Gibbs-sampler moves are always accepted. The algorithm updates the differ-
ent parameter blocks in a systematic order or a parameter block is selected randomly
and updated.

For complex models, the full conditional proposal distributions needed are not
always available in closed form or readily available for sampling. However, one can
aim at constructing a proposal distribution qt that is an approximation to the full
conditional distribution (e.g., a Gaussian approximation). In that case, one would
need to compute the acceptance ratio as it is not guaranteed to be equal to 1 (i.e.,
some of the proposal made by the approximation will most likely be rejected).
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Random-Walk MCMC

One of the more common way to create a MCMC proposal distribution is via simple
random walk. Let θ

(i)
1:t be the current state of the Markov chain. A new proposal is

generated as
θ̃1:t = θ

(i)
1:t + δ1:t,

where δ1:t ∼ qt(δ1:t |θ(i)
1:t). Hence, a perturbation is made to the current state of the

chain. The new proposal is then accepted or rejected in the usual way.

Langevin Diffusion.

Langevin diffusion can be thought of as a special case of a more general hybrid (or
rather ’Hamiltonian’) Monte Carlo algorithms (see e.g., Liu, 2001, chapter 9) and
yields a more effective random-walk procedure.

Let θ
(i)
1:t be the current state of the Markov chain. A new proposal is given by

θ̃1:t = θ
(i)
1:t +

1

2

∂ log πt(θ1:t)

∂θ1:t

∣∣∣∣
θ

(i)
1:t

h + h1/2Zt,

where Zt ∼ Gau(0, I) and h is a provided step-size parameter. Note the use of
the gradient of the log-posterior distribution in determine the proposal — the new
proposal has a tendency to be closer to the (local) mode of the posterior distribution.
The new proposal is then accepted or rejected in the usual way.
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Table 2: Importance Sampling (IS) Algorithm.

(1) Generate a sample of size N from the proposal distribution q(θ);

θ(i) ∼ q(θ), i = 1, . . . , N.

(2) Compute the importance weights,

w̃(i) ∝ π(θ(i))
q(θ(i))

, i = 1, . . . , N,

and define w(i) = w̃(i)/
∑N

j=1 w̃(j).

The distribution π(·) is then approximated by

π̂N (θ) ≡
N∑

i=1

w(i)δ(θ − θ(i)),

which places the probability mass w(1), . . . , w(N) on the support points θ(1), . . . ,θ(N).

4 Sequential Monte Carlo (SMC)

Sequential Monte Carlo (SMC) is inherently designed to sample from dynamic pos-
terior distributions, both in terms of leveraging the dynamic nature of the model
and also in terms of reusing previous calculations. As SMC is not Markovian, it is
inherently parallel; the different Monte Carlo proposals can be generated and evalu-
ated in parallel. A good Introduction to SMC is ”Sequential Monte Carlo Methods
in Practice” by Doucet et al. (2001) and ”Monte Carlo Strategies in Scientific Com-
puting” by Liu (2001). The paper by Arulampalam et al. (2002) gives a tutorial
focusing on Bayesian tracking.

4.1 Importance Sampling (IS)

At the core of the SMC approach is the generation of a weighted sample via im-
portance sampling (IS). Suppose one wants to generate a sample of size N from
the distribution π(θ) without having direct access to an algorithm to do so, but is
able to evaluate π(θ) up to a proportionality constant. Importance sampling ac-
complishis this by using a proposal distribution q(θ), that is close to π(θ) and from
which it is easy to generate samples. The basic algorithm is given in Table 2 on
page 20.

The efficiency of the IS algorithm to generate a representative sample from the
target distribution, π(θ), is judged by how evenly the importance weights {w̃(i)} are
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distributed. One measure on the efficiency is the effective sample size, defined as

ESS ≡ 1∑N
i=1(w

(i))2
.

If all the weights are equal, then ESS = N , and on the other side, if all the weights
are equal to zero except one, then ESS = 1.

For posterior inference, where π(θ) ∝ p(y |θ)p(θ) and y is the observed data,
IS is particularly useful. For example, one could take the proposal distribution as
the prior distribution, q(θ) = p(θ), which would result in

w̃(i) = p(y |θ(i)), for θ(i) ∼ p(θ) ; i = 1, . . . , N.

Hence, the weights would be proportional to the likelihood. Note that this might
not yield an effective posterior sample (in terms of ESS) and a better proposal
distribution might be needed, that is, a distribution that is closer to p(y |θ)p(θ).

4.2 The Basics of SMC

Sequential Monte Carlo aims at using IS to generate samples from a sequence of
distributions, π1(θ1), π2(θ1:2), . . . , without needing to start from “scratch” with each
new distribution. This makes SMC particularly efficient for dynamically evolving
models. The basic steps of the SMC algorithm are given in Table 3 on page 22.

The SMC algorithm is relatively simple, but as in IS, its effectiveness is de-
termined by how good the proposal distribution is in Step A, Table 3, and how
computationally feasible it is to evaluate the resulting importance weights in Step
B. By taking advantage of the dynamic nature of the model, the proposal distri-
bution can be partitioned in the same sequential fashion as the prior distribution,

qt(θ̃1:t) = qt(θ̃1)qt(θ̃2 | θ̃1:1) · · · qt(θ̃t | θ̃1:t−1) =
t∏

t′=1

qt(θ̃t′ | θ̃1:t′−1), (20)

where recall that θ̃1:0 = ∅, an empty set of parameters. For the proposal distribution
(20), the IS weight (19) can be written as

w̃1:t ∝
t∏

t′=1

(
p(yt′ | θ̃1:t′)p(θ̃t′ | θ̃1:t′−1)

qt(θ̃t′ | θ̃1:t′−1)

)
∝ w̃1:t−1

(
p(yt | θ̃1:t)p(θ̃t | θ̃1:t−1)

qt(θ̃t | θ̃1:t−1)

)

using the product format of the posterior in (6).
Note, although not directly indicated, all the conditional distributions in (20)

may take advantage of the IS from the previous time point, Θ1:t−1, and the new
data, yt; along the lines of the sequential MCMC algorithms in Section 3.2 and 3.3.
This is really the key to the success of SMC for dynamic problems.
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Table 3: Sequential Monte Carlo (SMC) Algorithm:

Initialization: Assume at time t = t0 ∈ {1, 2, . . . } we have an importance sample

Θ1:t0 = {θ(i)
1:t0

, w
(i)
1:t0

: i = 1, . . . , N}

from the posterior distribution πt0(θ1:t0)

For t = t0 + 1, t0 + 2, . . . :

Step A (Proposal)
For i = 1, . . . , N , sample

θ̃
(i)
1:t ∼ qt(θ̃1:t) = qt(θ̃t | θ̃1:t−1)qt(θ̃1:t−1)

where qt(θ̃1:t) is a user-specified proposal distribution. Note how the proposal
distribution is partitioned into two parts; first θ̃1:t−1 is sampled from qt(θ̃1:t−1)
and then θ̃t is sampled from qt(θ̃t | θ̃1:t−1).
The key to a good SMC proposal distribution is to leverage (condition on)
Θ1:t−1 and the new data yt. That is, take

qt(θ̃t | θ̃1:t−1)qt(θ̃1:t−1) = qt(θ̃t|θ̃1:t−1,yt)qt(θ̃1:t−1 |Θ1:t−1,yt).

Step B (Importance Weights)
For i = 1, . . . , N , evaluate the unscaled importance weights,

w̃
(i)
1:t ∝

πt(θ̃
(i)
1:t)

qt(θ̃
(i)
1:t)

∝
p(yt | θ̃

(i)
1:t)p(θ̃

(i)
t | θ̃(i)

1:t−1)

qt(θ̃
(i)
t | θ̃(i)

1:t−1)

πt−1(θ̃
(i)
1:t−1)

qt(θ̃
(i)
1:t−1)

(19)

Let,

θ
(i)
1:t = θ̃

(i)
1:t and w

(i)
1:t = w̃

(i)
1:t/

N∑
j=1

w̃
(j)
1:t ,

then, we have the approximation;

πt(θ1:t) ' π̂N
t (θ1:t) ≡

N∑
i=1

w
(i)
1:tδ(θ1:t − θ

(i)
1:t).

Note. Above, θ
(i)
1:t is simply put equal to θ̃

(i)
1:t, however, often an additional per-

turbation step is introduced (e.g., a single MCMC step) yielding θ
(i)
1:t different from

θ̃
(i)
1:t.
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A natural way to take advantage of the IS from πt−1(θ1:t−1) is to build a proposal
distribution qt(·) that conditions on a given realization from πt−1(θ1:t−1) (similar to
Section 3.2). Such proposal distribution can be written as

qt(θ̃1:t |θ1:t−1) = qt(θ̃t | θ̃1:t−1)qt(θ̃1:t−1 |θ1:t−1),

where θ1:t−1 ∼ πt−1(θ1:t−1).
(21)

The proposal distribution qt(θ̃1:t−1 |θ1:t−1) can be taken to be of the sequentially
form (see also (16)),

qt(θ̃1:t−1 |θ1:t−1) =
t−1∏
t′=1

qt(θ̃t′ | θ̃1:t′−1, θ1:t′).

Hence, the proposal can be considered to consist of three steps: (1) draw a real-
ization from πt−1(·), (2) perturbing the drawn realization via qt(θ̃1:t−1 |θ1:t−1), and
finally (3) extend the perturbed realization by drawing θ̃t from qt(θ̃t | θ̃1:t−1). The
immediate drawback of this general conditional proposal approach above is that

qt(θ̃1:t) = qt(θ̃t | θ̃1:t−1)

∫
qt(θ̃1:t−1 |θ1:t−1)πt−1(θ1:t−1)dθ1:t−1 (22)

is needed for the evaluation of the importance weight in (19). This integral is rarely
available in closed form and often difficult to evaluate directly. However, one has
the approximation,

qt(θ̃1:t) ' qt(θ̃t | θ̃1:t−1)
N∑

i=1

qt(θ̃1:t−1 |θ(i)
1:t−1)w

(i)
1:t−1,

using the IS approximation π̂N
t−1(θ1:t−1) of πt−1(θ1:t−1). Depending on how the

proposal qt(θ̃1:t−1 |θ1:t−1) is constructed, most of the terms in the summation above
might be equal to zero, and only few a terms would need to be summed up (it is
computationally expensive to loop through all N terms of the sum to generate a
single proposal — recall there are N proposals to be made). We shall now outline
SMC algorithms that take this approach and have been showed to be successful in
number of cases; see Doucet et al. (2001).

4.3 SMC via Rejuvenation and Extension

This algorithm is the SMC version of the MCMC rejuvenation and extension al-
gorithm in Section 3.2 — or vice versa. We shall first introduce it from a more
classical view which is often attributed to Neil Gordon (Gordon et al., 1993) and
referred to as Gordon’s bootstrap filter or simply as a particle filter. We then follow
up with a generalization due to Pitt and Shephard (Pitt & Shephard, 1999, 2001)
which improves on its efficiency and robustness.

23



Johannesson, Hanley, and Nitao Dynamic Bayesian Models via Monte Carlo

Gordon’s Bootstrap Filter

Classical applications of the SMC algorithm often have a data model (a likelihood)
where the data at time t only depends on the model parameters at time t,

p(yt |θ1:t) = p(yt |θt).

An example is the target tracking model in Section 2.2. As such, the newly ob-
served data yt is mostly informative about θt and carries less information about
θt−1, . . . ,θ1. In light of this, a good candidate for the conditional proposal distri-
bution in (21) is

qt(θ̃1:t |θ1:t−1) = qt(θ̃t | θ̃1:t−1)δ(θ̃1:t−1 − θ1:t−1),

where θ1:t−1 ∼ πt−1(θ1:t−1),
(23)

which corresponds to taking qt(θ̃1:t−1 |θ1:t−1) = δ(θ̃1:t−1 − θ1:t−1) in (21). That is,
θ̃1:t = (θ1:t−1, θ̃t), and only the new addition, θ̃t, is generated and the rest is kept
identical to θ1:t−1. Note, there is nothing in the above approach that prevents it
from being used for the more general data model p(yt |θ1:t). However, if the newly
acquired data has information that is not very much in line with past data, this
approach could yield a large number of SMC realizations with small weights (i.e., a
small effective sample size); this issue was also raised in Section 3.2.

To generate a proposal from (23) one would use the IS from πt−1(θ1:t−1), and
replace Step A in Table 3 with:

Step A (Rejuvenation and Extension Proposal)

(1) Sample Ĩ from {1, . . . , N} with p(Ĩ = j) = w
(j)
1:t−1; j = 1, . . . , N .

(2) Sample θ̃t ∼ qt(θ̃t |θ(Ĩ)
1:t−1).

(3) Let θ̃1:t ≡ (θ
(Ĩ)
1:t−1, θ̃t).

Since the proposal distribution (23) does not modify the past, the integral in
(22) does not need to be evaluated, and the marginal proposal distribution needed
for the IS weights in (19) is simply given by

qt(θ̃1:t) = qt(θ̃t | θ̃1:t−1)πt−1(θ̃1:t−1).

The resulting IS weights in Step B in Table 3 are then given by

w̃1:t ∝
πt(θ̃1:t)

qt(θ̃1:t)
∝ p(yt | θ̃1:t)p(θ̃t | θ̃1:t−1)πt−1(θ̃1:t−1)

qt(θ̃t | θ̃1:t−1)πt−1(θ̃1:t−1)
=

p(yt | θ̃1:t)p(θ̃t | θ̃1:t−1)

qt(θ̃t | θ̃1:t−1)
,

(24)
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and note how the πt−1(·) terms cancel out. Gordon et al. (1993) proposed taking
qt(θ̃t |θ1:t−1) equal to p(θ̃t |θ1:t−1), yielding w̃1:t = p(yt | θ̃1:t).

The goal in importance sampling is always to construct a proposal distribution
that results in weights of similar size, yielding a large effective sample size. For
the case above, when we condition on the past, it translates into selecting a good
proposal distribution for θ̃t. It can be shown that the full conditional distribution
p(θ̃t |θ1:t−1,yt) is the “optimal” proposal distribution for Gordon’s bootstrap filter,
since

p(θ̃t |θ1:t−1yt) ∝ p(yt | θ̃1:t)p(θ̃t |θ1:t−1), (25)

yielding w̃1:t ∝ 1 in (24).
Although one might be able to generate θ̃t using the optimal proposal distri-

bution (25), the step before, proposing θ̃1:t−1, is done without taking into account
the new data — it is simple generated from the posterior at time t − 1 using the
IS. This can be particularly inefficient if the new data carries information that has
large impact on the past. Pitt & Shephard (1999, 2001) improved upon the basic
bootstrap filter, by taking a similar approach as discussed in Section 3.2 and 3.3 on
sequential MCMC, which we shall outline now.

Pitt’s and Shephard’s Modification

We could have introduced the bootstrap filter by aiming at generating realizations
from the following mixture approximation to πt(θ1:t),

π̂t(θ1:t) ≡ C × p(yt |θ1:t)p(θt |θ1:t−1)
N∑

i=1

w
(i)
1:t−1δ(θ1:t−1 − θ

(i)
1:t−1)

= C ×
N∑

i=1

p(yt |θ(i)
1:t−1, θt)p(θt |θ(i)

1:t−1)w
(i)
1:t−1δ(θ1:t−1 − θ

(i)
1:t−1),

(26)

which is derived from (7) by replacing πt−1(θ1:t−1) with its IS approximation π̂N
t−1(θ1:t−1),

and where C is an unknown normalizing constant. Then, similar to Section 3.2, we
introduce the augmented parameter (θ1:t, I) with the joint distribution

πa
t (θ1:t, I) = C × p(yt |θ(I)

1:t−1, θt)p(θt |θ(I)
1:t−1)w

(I)
1:t−1δ(θ1:t−1 − θ

(I)
1:t−1), (27)

and we note that for the marginal distribution of θ1:t we have that

πa
t (θ1:t) =

N∑
I=1

πa
t (θ1:t, I) = the mixture in (26).

Hence, as mentioned in Section 3.2, this suggests that we could sample from the
joint augmented distribution in (27) and then simply drop the index I to derive a
sample from (26).
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Pitt and Shephard suggested basing the proposal on the augmented distribution

qa
t (θ̃1:t, Ĩ) = qt(θ̃t |θ(Ĩ)

1:t−1)v
(Ĩ)
1:t−1δ(θ̃1:t−1 − θ

(Ĩ)
1:t−1),

where the weighs v
(1)
1:t−1, . . . , v

(N)
1:t−1 are allowed to depend on the new data yt; if

v
(i)
1:t−1 = w

(i)
1:t−1 their approach yields the bootstrap filter. The marginal proposal

distribution for θ̃1:t is then

qt(θ̃1:t) =
N∑

i=1

qt(θ̃t | θ̃
(i)

1:t−1)v
(i)
1:t−1δ(θ̃1:t−1 − θ

(i)
1:t−1), (28)

which can be compared to (26). An augmented proposal is then simply generated
using the following procedure (very similar to the previous one):

Step A (P & S Rejuvenation and Extension Proposal)

(1) Sample Ĩ from {1, . . . , N} with p(Ĩ = j) = v
(j)
1:t−1; j = 1, . . . , N .

(2) Sample θ̃t ∼ qt(θ̃t |θ(Ĩ)
1:t−1).

(3) Let θ̃1:t = (θ
(Ĩ)
1:t−1, θ̃t), and the augmented proposal is (θ̃1:t, Ĩ).

The IS weight associated with the proposal (θ̃1:t, Ĩ) is given by

w̃1:t ∝
πa

t (θ̃1:t, Ĩ)

qa
t (θ̃1:t, Ĩ)

∝
p(yt |θ(Ĩ)

1:t−1, θ̃t)p(θ̃t |θ(Ĩ)
1:t−1)w̃

(Ĩ)
1:t−1

qt(θ̃t |θ(Ĩ)
1:t−1)v

(Ĩ)
1:t−1

(29)

In light of this, Pitt and Shephard proposed taking

v
(i)
1:t−1 ∝ w

(i)
1:t−1p(yt |θ(i)

1:t−1, θ̂t) and qt(θ̃t |θ(i)
1:t−1) = p(θ̃t |θ(i)

1:t−1),

where θ̂t = θ̂t(θ
(i)
1:t−1) is some likely value of θ̃t conditional on θ

(i)
1:t−1 (i.e., the mode,

the mean, or other likely value associated with p(θ̃t |θ(i)
1:t−1)). Alternatively, one

could use

v
(i)
1:t−1 ∝ w

(i)
1:t−1p(yt |θ(i)

1:t−1, θ̂t)p(θ̂t |θ(i)
1:t−1) and qt(θ̃t |θ(i)

1:t−1) = p(θ̃t |θ(i)
1:t−1,yt),

and recall that p(θ̃t |θ(i)
1:t−1,yt) ∝ p(yt |θ(i)

1:t−1, θ̃t)p(θ̃t |θ(i)
1:t−1).

Note that the final weights are not all equal, but the newly acquired data im-
pacted the weights v

(1)
1:t−1, . . . , v

(N)
1:t−1, and therefore which realizations from time t−1

were carried on to time t. This is particularly important when the distribution of
yt is given by p(yt |θ1:t), but not by p(yt |θt).
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4.4 SMC via Rejuvenation, Modification and Extension

We shall now extend the SMC approach introduced in the previous section to the
case where we not only extend previous IS realizations, but also modify them to
some extent. (See Section 3.3 for a similar topic.)

One approach to extend previous SMC approaches, that only rejuvenate and
extend previous IS realizations, is to consider a proposal distribution of the following
form,

qt(θ̃1:t) = qt(θ̃t | θ̃1:t−1)
N∑

i=1

qt(θ̃1:t−1 |θ(i)
1:t−1)qt(i) (30)

where {θ(i)
1:t−1} are the IS from time t − 1. Note that through qt(θ̃1:t−1 |θ(i)

1:t−1) a
perturbation can be made to i-th IS realization from time t − 1. A proposal from
this distribution is generated by the following steps:

Step A (Rejuvenation, Modification, and Extension Proposal)

(1) Sample Ĩ from {1, . . . , N} with p(Ĩ = i) = qt(i).

(2a) Sample θ̃1:t−1 ∼ qt(θ̃1:t−1 |θ(Ĩ)
1:t−1).

(2b) Sample θ̃t ∼ qt(θ̃t | θ̃1:t−1).

(3) Put θ̃1:t = (θ̃1:t−1, θ̃t).

As mentioned in Section 3.3, the conditional proposal distribution qt(θ̃1:t−1 |θ(Ĩ)
1:t−1)

can be taken to be of the sequential form,

qt(θ̃1:t−1 |θ(Ĩ)
1:t−1) =

t−1∏
t′=1

qt(θ̃t′ | θ̃1:t′−1, θ
(Ĩ)
1:t′),

and note that each of sub-proposal distributions may depend on the newly acquired
data, yt. If the new data is only informative for a small subset of the parame-
ters, many of the sub-proposal distributions can simply keep the past value of the

parameter intact (i.e., put θ̃t′ = θ̃
(Ĩ)

t′ with probability 1 for some t′ ∈ {1, . . . , t− 1}).
The main difference between this approach and the previous approach, in which

we did not perturb the past IS realizations, is that IS weight calculations can not
be based on the IS approximation in (26). The weight calculations need to be based
on the original expression for the posterior distribution; see (6). That makes this
approach not as computationally efficient as the previous method, however, it is
more flexible. The amount of extra computational effort needed depends on how
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extensively the proposal distribution qt(θ̃1:t−1 |θ(Ĩ)
1:t−1) modifies the IS realization

θ
(Ĩ)
1:t−1, generated at the previous time point. Recall, from (6), that the posterior

distribution can be written as

πt(θ1:t) ∝
t∏

t′=1

p(yt′ |θ1:t′)p(θt′ |θ1:t′−1). (31)

Then depending on how extensively θ
(Ĩ)
1:t−1 is modified by the proposal process, most

of the computations involved in computing the above posterior have already been
carried out at the previous time point. A similar argument applies to the evaluation
of the proposal distribution qt(θ̃1:t), given by (30) and needed in (19) to compute
the IS weight; see also Section 3.3 on generalizing the rejuvenating and extending
MCMC algorithm. We shall come back to the issue of modifying past IS realiza-
tions later in Section 4.5, where we combine SMC with MCMC to perturb past
realizations.

Note. For most applications, it is reasonable to assume that the newly acquired
data at time t, yt, has information content mostly relevant to parameters close to
t in time. That is, yt has no (or very small) information value for θ-parameters
sufficiently far into the past; for θt′ where t′ is considerably smaller than t. As such,
in practice one does not carry around the whole time history of the θ parameter,
but rather a time window of a fixed size (i.e., θ1:t is replaced with θ(t−k):t for some
k).

4.5 Hybrid Methods: MCMC within SMC and MCMC
prior to SMC

There can be some benefits of mixing SMC and MCMC to generate realizations
from the posterior. There are really two areas where MCMC could benefit SMC.

MCMC Within SMC

Some recent attempts have been made using a one or more MCMC steps within each
SMC step to perturb the current IS (MacEachern et al., 1999; Gilks & Berzuini, 2001;
Godsill & Clapp, 2001). For example, in the case where one adopts SMC based on
rejuvenation and extension (i.e., a SMC that does not modify the past), one can at
the end of each SMC time step apply one or more MCMC steps to each IS realization.
The MCMC step can be very general, and in particular one could propose to modify
the past, resulting in a SMC-MCMC hybrid algorithm that rejuvenates, extends,
and modifies past IS realizations. The most basic algorithm is as follows:
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Step 0: Assume at time t − 1 we have the IS Θt−1 = {θ(i)
1:t−1, w

(i)
1:t−1 :

i = 1, . . . , N}.
Step 1: Carry out a SMC step from time t−1 to t (e.g., using Pitt’s and

Shephard’s rejuvenation and extension algorithm from Section 4.3),

yielding a new IS Θt = {θ(i)
1:t, w

(i)
1:t : i = 1, . . . , N}.

Step 2: Use B MCMC steps to perturb the IS:

For i = 1, . . . , N :

Step 2.1: Draw Ii ∈ {1, . . . , N} with p(Ii = k) = w
(k)
1:t ; k =

1, . . . , N , and put θ
(i,0)
1:t = θ

(Ii)
1:t .

For j = 1, . . . , B:

Step 3.1: Make a MCMC proposal θ̃1:t ∼ q(θ̃1:t |θ(i,j−1)
1:t ).

Step 3.2: Compute the MCMC acceptance probability α(θ̃1:t; θ
(i,j−1)
1:t )

and put θ
(i,j)
1:t = θ̃1:t with probability α(θ̃1:t; θ

(i,j−1)
1:t ), else

θ
(i,j)
1:t = θ

(i,j−1)
1:t .

Step 3 The new IS is given by θ
(i)
1:t = θ

(i,M)
1:t with w

(i)
1:t = 1/N — that is,

the sample is equally weighted.

There is a variation to the algorithm above where the random draw in Step 2.1
is simply replaced with θ

(i,0)
1:t = θ

(i)
1:t.

MCMC Prior to SMC

The SMC algorithm in Table 3 needs to be initialized with an IS at time t0; the
first time point of data processing. An ideal way to generate this initial sample is
via MCMC using data from time 1, . . . , t0. The resulting, equally weighted MCMC
sample can then be passed on to SMC for processing data from time t0+1, t0+2, . . . .

4.6 SMC Proposal Distributions

For a SMC algorithm that just rejuvenates and extends past realizations (the boot-
strap filter and Pitt’s and Shephard’s modification), we have already mentioned two
natural candidates for the proposal distribution qt(θ̃t | θ̃1:t−1):

qt(θ̃t | θ̃1:t−1) = p(θ̃t | θ̃1:t−1), (the prior)

qt(θ̃t | θ̃1:t−1) = p(θ̃t | θ̃1:t−1,yt). (the full conditional)

In the case where the full conditional distribution is not available, one can aim at
designing a proposal distribution that is an approximation to the full conditional
(this mirrors the Gibbs proposal algorithm in MCMC). Popular approximations are
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multi-variate Gaussian or t distributions. If the prior distribution p(θt | θ̃1:t−1) is
informative (relatively narrow and well focused) it is often just sufficient to take the
proposal distribution equal to the prior distribution, as suggested by Gordon.

In the case when the past SMC realizations are perturbed by carrying out one
or more MCMC steps for each realization, as outlined in previous section, all the
proposal methods suggested in Section 3.4 apply.
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5 Applications

We shall demonstrate the use of MCMC and SMC for two applications. The first one
is a linear Gaussian (Normal) model, a combination of the Gaussian example given
in Section 1.3, page 3, and the Gaussian target-tracking setup given in Section 2.2.
In this case there is an analytic, closed form expression for the posterior distributions
of interest, which can be compared to the sample-derived (MCMC/SMC) posterior
inference approach. The second application is the atmospheric event reconstruction
problem described in Section 2.3. In this case there is no closed-form analytic
expression available for posterior inference.

5.1 Bivariate Gaussian Distribution

Our setup is as follows: Assume at “time” 1 we have the unknown system parameter
x1 (e.g., a location of an object) and an observation y1 that is assumed to be related
to x1 according to the additive measurement-error model

y1 = x1 + ε1, where ε1 ∼ Gau(0, σ2). (32)

The measurement-error model can also be written as y1 ∼ Gau(x1, σ
2). A priori,

we assume that
x1 = µ1 + δ1, where δ1 ∼ Gau(0, τ 2). (33)

That is, x1 ∼ Gau(µ1, τ
2) where both µ1 and τ 2 are known. Given this setup,

Gaussian theory (e.g., West & Harrison, 1997, chapter 17.2) yields:(
y1 |x1

)
∼ Gau(x1, τ

2 + σ2)[
y1

x1

]
∼ Gau

([
µ1

µ1

]
,

[
τ 2 + σ2 τ 2

τ 2 τ 2

])
.(

x1 | y1

)
∼ Gau(µ1 + ρ2(y1 − µ1), τ

2(1− ρ2))

where ρ2 = τ 2/(τ 2 + σ2). Hence, the posterior distribution of x1 given y1 is

p(x1 | y1) , and is Gau(µ1 + ρ2(y1 − µ1), τ
2(1− ρ2)). (34)

For the setup above, we generated synthetic data. We assumed that x1 = 0
and generated y1 according to the measurement-error model in (32) with σ2 = 1,
yielding

y1 = −0.626, drawn from Gau(x1 = 0, σ2 = 1).

The parameters associated with the prior for x1 in (33) were taken to be

µ1 = 0, and τ 2 = 102,

yielding a rather vague prior information. This yields a Gaussian posterior distri-
bution for x1 with mean equal to −0.620 and standard deviation equal to 0.990;
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see (34). We shall now apply MCMC to sample from the posterior distribution and
compare to the true distribution.

We applied MCMC using a Gaussian random-walk proposal distribution,

x̃1 ∼ q1(x̃1 |x(i)
1 ) = ϕ(x̃1; x

(i)
1 , ξ2),

where ϕ(x̃1; x
(i)
1 , ξ2) denotes the Gaussian density with mean x

(i)
1 and variance ξ2

evaluated at x̃1. Since the proposal distribution is symmetric (q1(x̃1 |x(i)
1 ) = q1(x

(i)
1 | x̃1)),

the acceptance ratio is simply given by

ρ(x̃1; x
(i)
1 ) =

p(y1 | x̃1)

p(y1 |x(i)
1 )

=
ϕ(y1; x̃1, σ

2)

ϕ(y1; x
(i)
1 , σ2)

.

We generated three MCMC samples, each of size 2,000, using a different value for
ξ in the proposal distribution for each sample; ξ = 0.35, 2.5, 12. With ξ = 0.35
the acceptance rate was around 90% (too high due to too small step-size), with
ξ = 2.5 the acceptance rate was around 0.43% (which is close to optimal), while for
ξ = 12 the acceptance rate was around 10% (too low due to too large step-size).
Figure 1 summarizes the results from the three chains. We see how the MCMC
sample corresponding to ξ = 2.5 mixes better than the other two samples, resulting
in smaller auto-correlation (i.e., larger effective sample size). A histogram of the
sample realizations is seen to match well the true posterior density.

We shall now extend the above example to “time” 2: At time 2 we have the
unknown system variable x2 (e.g., the object moved to a new location) and a new
observation y2 that is assumed to be related to x2 according to the same additive
measurement-error model as before;

y2 = x2 + ε2, where ε2 ∼ Gau(0, σ2).

What we know a priori is that x2 is not too far (different) from x1. We therefore
assume the following conditional prior distribution for x2,

x2 = x1 + η2, where η2 ∼ Gau(0, 1).

That is, x2 ∼ Gau(x1, 1) a priori. To generate synthetic data at time 2, we let
x2 = 1 and generate the observation y2 according to the measurement-error model,
yielding y2 = 1.184.

Given the new data y2 we want to derive a sample from the posterior distribution
of (x1, x2) given (y1, y2); that is, from p(x1, x2 | y1, y2). It should be noted, since
all the distributions involved are Gaussian, the posterior distribution is available in
closed form as multivariate Gaussian (see e.g., West & Harrison, 1997, chapter 17.2).
Hence, we can compare our sample to the true posterior, as before.

There are two approaches we can take to generate realizations from p(x1, x2 | y1, y2):
(1) start a new MCMC to generate a sample from p(x1, x2 | y1, y2) or (2) use the pre-
vious MCMC sample as a starting point for a SMC. The first option would be similar
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Figure 1: MCMC summary plots for x1 for three different MCMC samples; left, a
proposal distribution with small step-size (ξ = 0.35), middle, a proposal distribution
with a good step-size (ξ = 2.5), and right, a proposal distribution with too big step-
size (ξ = 12). The first row of plots shows the the first 200 realizations for each chain
along with the true value of x1 superimposed (blue, solid line) and the mean and
plus/minus one standard deviation of the true posterior distribution (red,dashed).
The middle row of plots shows the auto-correlation in each chain. The bottom row
of plots show a histogram of the realizations along with the true value of x1 (blue,
solid) and the true posterior density (red, dashed). The red circles show the data
point y1.
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to the previous MCMC approach for x1 alone, except we would use, for example a
2D Gaussian random-walk proposal as we have to sample both x1 and x2. We shall
therefore demonstrate the use of the second option, SMC, using Gordon’s bootstrap
filter, as outlined in Table 4 for this implementation.

Table 4: SMC Algorithm for Bivariate Gaussian Example.

Initial Sample: Start with the inital sample {x(i)
1 : i = 1, . . . , N} generated by

MCMC. (Note, it is an equally weighted sample; w
(i)
1 = 1/N .)

For i = 1, . . . , N :

(1) Sample x
(i)
2 ∼ q2(x2 |x(i)

1 ), where q2(· | x(i)
1 ) is Gau(x

(i)
1 , 1), the condi-

tional prior distribution.

(2) Compute the importance weights w̃
(i)
1:2 = ϕ(y2; x

(i)
2 , σ2)

The final sample is then given by {(x(i)
1 , x

(i)
2 ), w

(i)
1:2 : i = 1, . . . , N}, where w

(i)
1:2 =

w̃1:2/
∑

j w̃
(j)
1:2.

To get a final, equally weighted sample at time 2, the final weighted SMC re-
alizations were resampled; that is, 2,000 sample points were drawn from the final
collection (with replacement), where the probability of drawing each point is pro-
portional to its final weight. Hence, the resampled collection has multiple copies of
realizations with high weights, but realization with low weights have small chance of
being picked. (Of the 2,000 original realizations, 1,124 were selected by the resam-
pling process and of those, 500 appeared once in the sample, 372 appeared twice,
and 372 three times.) Figure 2 summarizes the results. It shows the marginal his-
tograms of the samples for x1 and x2, along with the true posterior distribution,
and the joint distribution of x1 and x2 along with true posterior contour lines.

5.2 Atmospheric Dispersion Modeling with Unknown Source
Characteristics

We shall now apply MCMC and SMC to estimate an unknown release into the at-
mosphere using a computer dispersion simulation model as described in Section 2.3.

The Setup: Synthetic Truth and Data

To test the feasibility of using MCMC and SMC to conduct inference on the charac-
teristics of an unknown release into the atmosphere, we generated a synthetic sensor
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Figure 2: The left and the middle panels show the marginal distribution of x1 and
x2, with the true marginal distribution shown as (red) dotted line and the true value
of x1 and x2 given by a (blue) solid vertical line (a red circles show the observed
data). The right panel shows the joint distribution of x1 and x2 as represented
by the SMC realizations (via resampling). The true mean of the joint posterior
distribution is shown along with the 50% and the 95% contour lines.

data from a given source. Our setup is shown in Figure 3 (left). It shows a single
stationary source on the left side of the domain, with a constant wind blowing from
the West and five sensors located downwind from the source. Our time domain is
one hour and is splitted into six 10min intervals. In the first 10min interval the
source is not emitting at all, it then emits at a (relative) rate of 1.0, 0.5, 0.25, 0.1,
0.0 in the remaining five 10min intervals. The five sensors report 10min average con-
centrations in the same six 10min intervals as the source is emitting at a constant
rate (this is just for convenience and is not required). The atmospheric dispersion
model INPUFF (Petersen & Lavdas, 1986) was used to simulate the dispersion of
the release, which includes computing average concentrations at the five sensors sites
in the six 10min time intervals. These values were taken as the true concentrations
at the five sites in the six time periods; that is, in terms of the notation introduced
in Section 2.3,

C(mj, t) = Ĉ(mj, t) = the INPUFF predicted contaminant average concentra-
tion in the t-th time period, t = 1, . . . , 6, at sensor location mj, j = 1, . . . , 5.

Sensor data {cj,t : j = 1, . . . , 5, t = 1, . . . , 6} was then generated according to the

truncated Gaussian data-model in (9) with mean Ĉ(mj, t) and variance V (Ĉ(mj, t))
given by

V (Ĉ(mj, t)) =
(
1E-9 + 0.2× Ĉ(mj, t)

)2
. (35)

Hence, the standard deviation is given by 1E-9+0.2×Ĉ(mj, t), indicating that mea-
sured average 10min concentration of around 1E-9 and below are not distinguishable
from zero, while higher concentration measurements have an approximated coeffi-
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Figure 3: Left, the location of the stationary release source along with the five
sensors. Right, the synthetic true 10min average concentration at the five sensor
sites along with the synthetic observed concentrations.

cient of variation (CV) equal to 0.2 (20%). Figure 3 (right) shows the synthetic
truth {Ĉ(mj, t)} at the five sensors along with the synthetic data {cj,t}.

Finally, we note that the INPUFF model satisfies the additive factorization of
the predictive concentration as given by (8). This leads to simplifications (and
time-savings) in computations.

Initial MCMC at t = 2

From Figure 3 (right) we see that the first non-zero concentration is observed in the
second 10min time interval at sensor A, a concentration of 2.7E-8, with the remaining
four sensors reporting zero concentrations (or rather, concentrations below detection
level).

We now seek to start an initial MCMC sampler to sample from the posterior
distribution of the unknown source location, x, and the release rate in the first two
10min time interval, s1:2; that is, we seek to sample from π2(θ1:2), θ1:2 = (x, s1:2).
We assume a flat prior on the location of the source, as outlined in Section 2.3, and
a prior on the release rate that assumes an unknown start (i.e., either in the first
or the second time period) and then truncated Gaussian distribution for a non-zero
release; see (10)–(12). In terms of the notation in Section 2.3, we take the initial
non-zero release prior to be given by

f1(st∗) = f(st∗) is Gau(0, 202
)∣∣∞

0
,

which is also the prior we use for subsequent releases; that is, f2(s2 | s1) = f(s1).
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Hence, we assume that knowing s1 has no value in determining s2 a priori (a rather
vague assumption). To summarize, the prior on θ1:2 is given by

p(θ1:2) =

{
f(s1)f(s2) if t∗ = 1,

f(s2) if t∗ = 2.

We take the data-model, the likelihood, to be given by the product of the indi-
vidual distributions in (9), yielding

p(c1:2 |θ1:2) =
2∏

t=1

5∏
j=1

ϕ(cj,t; Ĉ(mj, t), (2E-9 + 0.2× Ĉ(mj, t))
2)
∣∣∞
0

, (36)

where ϕ(c; µ, V )
∣∣∞
0

is the density of a Gaussian distribution with mean µ and vari-
ance V , but restricted to the interval (0,∞]. Note we have inflated the variance
slightly by adding 1E-9 to the standard deviation used to generate the synthetic
data; see (35). This mirrors reality, where the likelihood used in the MCMC sam-
pler is just an approximation to the true (unknown) likelihood function.

The proposal distribution is a mixture of random-walk proposals and consist of
either: (1) making a release rate change proposal, or (2) making a source location
change proposal, or (3) making a joint release and location change proposal.

For the source location we use a random-walk on a lattice with a 0.1 horizon-
tal/vertical distance between grid-locations:

Location Proposal

Let x be the current location of the Markov chain, then:

(1) Create the grid-point neighborhood set

Nd(x) ≡ {x̃ : |x1 − x̃1| ≤ d, |x2 − x̃2| ≤ d, and x̃ 6= x},

where d > 0 is a given neighborhood-size parameter, and recall that
x = (x1, x2) and x̃ = (x̃1, x̃2).

(2) Generate the source location proposal x̃ ∼ q2(x̃ | Nd(x)), where

q2(x̃ | Nd(x)) =
1

|Nd(x)|
I(x̃ ∈ Nd(x)), (37)

|Nd(x)| = the number of grid-points in Nd(x), and I(x̃ ∈ Nd(x)) =
1 if x ∈ Nd(x), otherwise equal to 0.
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The size of the neighborhood Nd(x), given by d, affects the efficiency of the
location proposal. If d is too small, the resulting chain does not mix well and in
addition can also get “stuck” sampling in the vicinity of a local posterior mode. If d
is too large, large number of proposals gets rejected, but the chain is less likely to get
stuck around a local posterior mode. The approach we take is to select randomly the
neighborhood size d among three values, d = 0.1, 0.3, 2, with probability of selecting
each equal to 2/7, 4/7, 1/7, respectively. Hence, if a source location proposal is
made, a neighborhood-size parameters d is first drawn randomly, then a location is
selected randomly from Nd(x).

The benefits of working with a source location lattice is in terms of reduced
number of INPUFF runs needed, as one can store the results for each grid-location
by storing the values {Ĝx,t(mj, t

′)} for each grid-location x.4 The drawback of
the lattice approach is that we cannot distinguish between source locations within a
0.1×0.1 pixel. In practice, the resolution of the lattice can be linked to the accuracy
of the dispersion simulation program; a less accurate dispersion simulator can work
on a coarser grid.

The proposal distribution for the source release rates, s1:2, is slightly more in-
volved and is a two-step mixture; either propose a change in the start time of the
release or propose a change to the current non-zero release rates (or propose both
at the same time).

A change in the start time (t∗) is simply accomplished via random-walk to a
nearest neighbor. Since s1:2 is only of length two, it is just an issue if the release
started in the first time interval or the second time interval. Let s1:2 = (s1, s2) be
the current release rate. The change of start-time proposal is given by:

Release-Rate Start-Time Proposal

(1) If t∗ = 1, that is if s1 > 0, then t̃∗ = 2 is proposed with

s̃1:2 = (s̃1 = 0, s̃2 = s2),

yielding q2(t̃
∗ = 2, s̃1:2 | t∗ = 1, s1:2) = 1.

(2) If t∗ = 2, that is if s1 = 0, then t̃∗ = 1 is proposed with

s̃1:2 = (s̃1, s̃2 = s2), where s̃1 ∼ Gau(0, 52)
∣∣∞
0

,

yielding q2(t̃
∗ = 1, s̃1:2 | t∗ = 2, s1:2) = ϕ(s̃2; 0, 5

2)
∣∣∞
0

.

A change to the non-zero release rates is proposed via random-walk as follows:

4Actually, we are able to get {Ĝx,t(mj , t
′) : x = all grid points, t ≤ t′} in a single ’reverse’

INPUFF-run for each value of (mj , t
′); j = 1, . . . , 5, t′ = 1, 2. Hence, this requires only a total of

10 INPUFF runs.
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Non-Zero Release-Rate Proposal

(1) Propose to change nc non-zero release rates, where

nc = 1 + ∆c, ∆c ∼ Bin(Nc, πc),

where Bin(Nc, πc) denotes a binomial distribution on {0, . . . , Nc},
Nc = t−t∗ and πc ∈ (0, 1] is the rate parameter. Note, if t = t∗ = 2,
then nc = 1, but if t∗ = 1, either one or two release rates are changed
according to the rate parameter πc.

(2) Given the number of release rates to change (nc), select randomly
among the non-zero release rates which one to change and let {tc,j :
j = 1, . . . , nc} index the selected time periods.

(3) For j = 1, . . . , nc, make the random-walk proposal,

s̃tc,j
∼ Gau(stc,j

, τ 2
j )
∣∣∞
0

,

where the standard deviation τj specifies the “step-size”. The
τj’s are selected randomly from the set {1, 3, 9} with probability
{2/7, 4/7, 1/7}, respectively. Hence, each random-walk is carried
out with different step-size.

The proposal density is then given by

q2(s̃1:2 | s1:2) =
nc∏

j=1

ϕ(s̃tc,j
; stc,j

, τ 2
j )
∣∣∞
0

,

and note that we consider nc, {tc,j}, and {τj} fixed; that is, the reverse
proposal density q2(s1:2 | s̃1:2) is computed with the same numbers.

When a decision is made to make a source release change, a random draw is
made as to: (1) make a change to the start-time, (2) make a change to the non-zero
release rates, or (3) make a simultaneous change to the start-time and non-zero
releases. The probability assigned to these three types of proposals is 1/12, 10/12
and 1/12. That is, most of the time a non-zero release rate proposal is made.

The MCMC proposal step then alternates in a random fashion between making
(1) a source location proposal, (2) making a source release rate proposal, or (3) make
both source location and release rate proposals. An equal probability was assigned
to the three different types.

Six different MCMC samples, each of size 10,000, were generated using the above
proposal process. All six chains were initialized with the release rate s

(0)
1:2 = (0.1, 0.1),

but at six different locations:

x ∈ {(4, 1), (4, 3), (4, 5), (1, 1), (1, 2), (1, 5)}.
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The acceptance rate for each chain was about 20% (this low acceptance rate is
expected as the proposal process has a number of save-guard sub-proposals steps
that have a very low change of being accepted when performed, but can potentially
move the chain across low-probability barriers).

For the first 500 iterations (i = 1, . . . , 500), the likelihood was taken to be given
by

p(c1:2 |θ1:2)
1/Ti ,

where Ti = 1+(10−i×(10/500)) and often referred to as the annealing temperature;
see, for example Liu (2001), chapter 10. This causes the true likelihood (and hence,
the data) to be brought in “slowly” as a high value of T results in a “flatter”
likelihood (heated likelihood). This annealing process is well known technique to
escape from a bad initial values, for example, one that is located in the vicinity of
a local posterior mode of a low probability mass.

Figure 4 summarizes the MCMC output from the chain initialized at location
(4,3) and the chain initialized at location (1,2) — the first 500 iterations were
discarded (recall those use the “heated” likelihood). Both chains quickly fixates
on realizations with s1 = 0 (which was how the synthetic data was generated), but
the data seams to provide little information on the release rate in the second time
period, as it is seen to vary widely. Most realizations for the source location form a
half-circle upwind from the sensor reporting the only non-zero concentration. The
second chain, initialized at source location (1,2), generates in the beginning source
location realizations that are clustered together in the lower-left corner. This cluster
of realizations has lower posterior probability compared to the main cluster, as can
be seen from the trace plot of the log-posterior (a log-posterior difference of about
5 translates into posterior density ratio of about 150).

The six chains were combined to form a single posterior sample, with the first
1/3 of each chain discarded as a burn-in period. Figure 5 shows two maps of the
marginal posterior distribution of the source location. It shows a half-circle shaped
distribution upwind from the only sensor reporting a non-zero concentration. The
true location of the source is at the edge of the posterior distribution.

Figure 6 shows the posterior marginal distribution of the release rate in the
two time periods. The release rate for the first time period is estimated to have
p(s1 = 0 | c1:2) = 0.89; that is, most likely no release in the first time period (which
is the case). However, the data is not very informative for the release in the second
time interval, and the marginal posterior distribution for s2 is very close to the prior
distribution; Figure 6 (left). It is often more informative to look at the posterior
release rate conditional on a given location. Figure 6 shows the expected (average)
non-zero release rate in the second time period for different potential source locations
(those with non-zero posterior probability). As can be seen, locations further away
from the sensors are associated with higher release rates than those that are closer
to the sensors.
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Chain 1 [Initialized at location (4,3)]
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Chain 2 [Initialized at location (1,2)]
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Figure 4: MCMC summary for two chains. Shown is the trace of the log-posterior
distribution (up to an unknown additive constant), the trace of the release rate
parameters, the trace of the x and y components of the source location, and finally
a plot of the sampled source locations along with the location of the sensors and the
true location of the source.
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Figure 5: Left, a 3D perspective plot of the marginal posterior distribution of the
source location. Right, a 2D level plot of the marginal posterior distribution of
the source location (color scheme: cyan = low, magenta = high) along with con-
tours showing the regions containing the 90%, 95%, 99%, and 99.9% of the highest
posterior probability density (HPD credible sets).
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Figure 6: Left, a histogram of the posterior samples for the release rate in the second
time period. The true release rate is indicated with a (blue) vertical line and the
prior distribution is shown as a (red) dotted line. Right, the expected (average)
non-zero release rate, log10-transformed, in the second time period conditional on
location (i.e., log10 average release-rate at each location pixel).
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MCMC at t = 3

As new data arrives in the third time period (t = 3), one can carry out a new
MCMC for posterior inference or use SMC, using the MCMC sample from t = 2 as
the initial sample. We shall now carry out a MCMC posterior sampling for t = 3
(starting from scratch), but later one we shall use SMC for the same purpose.

We applied the same proposal process at t = 3 as at t = 2, with obvious exten-
sions to make it applicable for three time periods. A short initial run was carried
out to fine-tune the proposal distributions (i.e., step-size of random-walk samplers,
etc.), then six different chains were sampled, as in the case for t = 2.

Figure 7 summaries the result for two of the six chains in the same way as in
Figure 4. There is considerable more non-zero concentration sensor-observations
available at t = 3 that yield stronger posterior information. We see that one of the
chains in Figure 7 quickly converges while the other one needs approximately 4,000
iterations to stabilize.

We combined the samples from the six chains after discarding the first half of
each chain (a rather conservative approach). Figure 8 shows the marginal poste-
rior distribution of the source location and the marginal distribution of the source
release-rate in the second time period (s2). There is a much stronger posterior
knowledge about the source location at this time. Similarly, the marginal posterior
distribution for the release rate at t = 2 is rather peeked with the true release rate
close to the posterior peek. The release rate at t = 1 is estimated to be equal to
0 with 99.97% probability. However, not much is known about the release rate at
t = 3 (as expected).

SMC

We shall now carry out SMC for t = 3, . . . , 6 using the last 6,667 MCMC realizations
(the first 3,333 discarded as a burn-in period) from each of the six chains at t = 2
as the initial posterior sample;

Θ1:2 = {θ(i)
1:2 : i = 1, . . . , 40,002},

where the realizations are all of equal weight. We shall use Pitt’s and Shephard’s
(P&S) modification of Gordon’s bootstrap filter, as outlined in Section 4.3, with
the addition of performing MCMC perturbation within each SMC cycle, as outlined
in Section 4.5 on hybrid methods. The SMC-MCMC algorithm applied is given in
Table 5, with details on the various proposal distribution used to follow.

The likelihood, p(ct |θ1:t), is as in (9) and (36);

p(ct |θ1:t) =
5∏

j=1

ϕ(cj,t; Ĉ(mj, t), (2E-9 + 0.2× Ĉ(mj, t))
2)
∣∣∞
0

.
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Chain 1 [Initialized at location (4,3)]

0 2000 4000 6000 8000 10000

21
0

22
0

23
0

24
0

25
0

26
0

27
0

Iteration

lo
g−

po
st

er
io

r

0 2000 4000 6000 8000 10000

0
10

20
30

40

Iteration

R
el

ea
se

 r
at

e

0 2000 4000 6000 8000 10000

0
1

2
3

4
5

6

Iteration

x

0 2000 4000 6000 8000 10000

0
1

2
3

4
5

6

Iteration

y

0 1 2 3 4 5 6

0
1

2
3

4
5

6

x

y

Chain 2 [Initialized at location (1,2)]
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Figure 7: MCMC summary for two chains of six at t = 3; see Figure 4 for the
content of each plot.
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Figure 8: Left, a 2D level plot of the marginal posterior distribution of the source
location (color scheme: cyan = low, magenta = high) along with contours showing
the regions containing the 90%, 95%, 99%, and 99.9% of the highest posterior prob-
ability density (HPD credible sets). Right, a histogram of the posterior samples for
the release rate in the second time period, with the true release rate shown as a
(blue) vertical line and the prior distribution shown as a (red) dotted line.
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Similarly, the conditional prior for θt, p(θt |θ1:t−1), is as in the MCMC case for
non-zero releases, and given by

p(θt |θ1:t−1) = p(xt, st |xt−1) =

{
ϕ(st; 0, 202) if xt = xt−1,

0 otherwise.
(38)

Note, this is a very vague conditional prior on the release rate as it does not depend
on s1:t−1 at all.

The proposal distribution qt(θt |θ1:t−1) in Table 5 is given by

qt(θt |θ1:t−1) = qt(xt, st |xt−1, st−1) =

{
ϕ(st; st−1, 102)

∣∣∞
0

if xt = xt−1,

0 otherwise.

Hence, it proposes no change in location (as expected and in accordance to our
model) and then st is generated from a Gaussian distribution with mean st−1 and
standard deviation 10, and constrained to the interval [0,∞).

For the MCMC perturbation step in Table 5 we used a similar proposal process
as in the MCMC-only application previously for t = 2 and t = 3. That is, a random
choice is made to carry on: (1) a proposal to change the source release, (2) a proposal
to change the source location, or (3) both. The probability assigned to these three
proposals is 1/6, 4/6, and 1/4, respectively.

The source-release proposal consists of a random-walk proposal for a selected
source-release time period. Let θ

(i,j)
1:t = (x(i,j), s

(i,j)
1:t ) be the current value of the

Markov chain, then:

Release-Rate Proposal

(1) Select a time period ť from {t − 2, t − 1, t}, with probability 1/4,
2/4, and 1/4 of selecting each period, respectively.

(2) Generate šť ∼ Gau(s
(i,j)

ť
, σ2

ť
)
∣∣∞
0

and put the remaining release rates

of š1:t identical to those of s
(i,j)
1:t .

The standard deviations (SD) used in the release-rate proposal above were given by,

σk = 0.75× {the empirical SD of {š(i,0)
k : i = 1, . . . , N}},

but never taken less than 0.12.
The proposal for the source location was taken to be a random-walk to a grid-

point within a horizontal or vertical distance of 0.2 from the current location; that
is, as the proposal given in (37).
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The SMC results are summarized in Figures 9–11, for the time periods 1–3,
1–4, and 1–6, respectively. Each figure shows the marginal posterior distribution
of the source location and the marginal posterior distribution the release rate for
the three most recent time periods in each case. As expected, as more data is
gathered, the marginal posterior distribution of the source locations narrows around
the true location of the source. Similarly, as more data is processed, we gain better
knowledge about the source release-rate history. Note how the posterior distribution
of the release rate in the most recent time period in each case gets more informative
(narrower) at later time periods. This is due to a narrower posterior distribution
for the source location, which limits what the potential release rates in the latest
periods could be, given the data.

MCMC versus SMC

Both MCMC and SMC samples were generated for posterior inference at t = 3; see
Figure 8 and Figure 9, respectively. We notice a slight difference in the shape of the
highest posterior density (HPD) regions constructed for the source location based
on the two methods. However, the extent of the HPDs regions are very similar
for both methods. The SMC-based posterior distribution of s2 in Figure 9 seams
to be slightly narrower than the one shown in Figure 8 and based on the MCMC
sample. In general, we believe that the SMC sample gives a better representation of
the posterior than the MCMC sample; the SMC sample consist of a slightly larger
number of realizations (about 40,000 versus 30,000), but more importantly, it is a
better mixed sample since each SMC realizations is independently perturbed via 10
MCMC iterations.

One might get the impression that the SMC algorithm needs considerable more
computation time than the MCMC algorithm since, in addition to extending the
past SMC realizations from time t = 2 to t = 3, it performs 10 MCMC iteration for
each SMC realization (a total of 400,000 MCMC iterations). However, this is not the
case. As the SMC is not a sequential algorithm (like the MCMC algorithm), one can
take advantage of highly optimized vectorized computer operations that operate on
all the realizations at once. In fact, our current (serial) prototype implementation
of the SMC algorithm ran faster than the MCMC implementation. In addition, it is
relatively easy to implement the SMC algorithm to effectively use a computer with
a large number of CPUs (e.g., a Linux cluster), while this is not the case for the
MCMC algorithm.
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Figure 9: SMC posterior inference after processing data from time periods 1–3.
Top-left, a 2D level plot of the marginal posterior distribution of the source location
(color scheme: cyan = low, magenta = high) along with contours showing the
regions containing the 90%, 95%, 99%, and 99.9% of the highest posterior probability
density (HPD credible sets). The remaining plots show a histogram of the posterior
samples for the release rate at t = 1, 2, 3, with the true release rate shown as a (blue)
vertical line (note different horizontal scale).
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Figure 10: SMC posterior inference after processing data from time periods 1–4.
Top-left, a 2D level plot of the marginal posterior distribution of the source location
(color scheme: cyan = low, magenta = high) along with contours showing the
regions containing the 90%, 95%, 99%, and 99.9% of the highest posterior probability
density (HPD credible sets). The remaining plots show a histogram of the posterior
samples for the release rate at t = 2, 3, 4, with the true release rate shown as a (blue)
vertical line (note different horizontal scale).
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Figure 11: SMC posterior inference after processing data from time periods 1–6.
Top-left, a 2D level plot of the marginal posterior distribution of the source location
(color scheme: cyan = low, magenta = high) along with contours showing the
regions containing the 90%, 95%, 99%, and 99.9% of the highest posterior probability
density (HPD credible sets). The remaining plots show a histogram of the posterior
samples for the release rate at t = 4, 5, 6, with the true release rate shown as a (blue)
vertical line (note different horizontal scale).
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Table 5: SMC-MCMC Algorithm for Atmospheric Event Reconstruction.

The hybrid SMC-MCMC algorithm used to generate samples from the posterior
at times t = 3, . . . , 6 in the atmospheric reconstruction application. Details on
proposal distributions provided in text.

Initial Sample: Start with the initial, equal-weighted sample {θ(i)
1:2 : i =

1, . . . , N}, N = 40,002, derived from the initial MCMC samples.

For t = 3, . . . , 6: (Looping through the time periods)

Proposal Weights (P&S): For i = 1, . . . , N :

(1) Put θ̂
(i)

= 0.

(2) Compute v
(i)
1:t−1 = p(ct |θ(i)

1:t−1, θ̂
(i)

t )2. [“heated” likelihood.]

Extending to time t: For i = 1, . . . , N :

(1) Sample Ĩi ∈ {1, . . . , N} with p(Ĩi = j) ∝ v
(j)
1:t−1; j = 1, . . . , N .

(2) Generate θ̃
(i)

t ∼ qt(θt |θ(Ĩi)
1:t−1) and let θ̃

(i)

1:t ≡ (θ
(Ĩi)
1:t−1, θ̃

(i)

t ).

(3) Compute the importance-sample weight

w̃
(i)
1:t =

p(ct | θ̃
(i)

1:t)p(θ̃
(i)

t | θ̃(i)

1:t−1)

qt(θ̃
(i)

t |θ(i)
1:t−1)

1

v
(i)
1:t−1

. [recall, w
(i)
1:t−1 ∝ 1.]

MCMC Perturbation: For i = 1, . . . , N :

Selection: Select Ĩi ∈ {1, . . . , N} with p(Ĩi = j) ∝ w̃
(j)
1:t ; j =

1, . . . , N , and put θ
(i,0)
1:t = θ̃

(Ĩi)

1:t .

MCMC Loop: For j = 1, . . . , B: [B = 10 used.]

(1) Propose θ̌1:t ∼ qt(θ̌1:t |θ(i,j−1)
1:t ).

(2) Compute the M-H ratio

ρt(θ̌1:t; θ
(i,j−1)
1:t ) =

p(c1:t | θ̌1:t)p(θ̌1:t)qt(θ
(i,j−1)
1:t | θ̌1:t)

p(c1:t |θ(i,j−1)
1:t )p(θ

(i,j−1)
1:t )qt(θ̌1:t |θ(i,j−1)

1:t )
.

(3) Generate u ∼ Unif[0, 1] and put θ
(i,j)
1:t = θ̌1:t if

ρt(θ̌1:t; θ
(i,j−1)
1:t ) > u, otherwise put θ

(i,j)
1:t = θ

(i,j−1)
1:t .

Collect: Put θ
(i)
1:t = θ

(i,B)
1:t , then {θ(i)

1:t : i = 1, . . . , N} is an equal-
weighted sample from πt(θ1:t).
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