Modeling of radiological dispersal devices (RDD) requires dispersion models that treat a variety of radionuclides, material types, and particle sizes. NARAC develops more accurate near-source and downwind RDD models are developed through the use of the latest experimental data on explosive dispersal of materials. Examples include:
- Implementation of a dynamic cloud rise model that significantly improves the match to experimental deposition data over that resulting from a static cloud rise approach
- Improved cloud rise thermal stabilization heights derived from the Greenfield experiments being conducted in Israel
- Addition of a "ballistic” particle correction derived from experiments conducted by Sandia National Laboratories (SNL) that show that larger particles (>100 micrometer diameter) produced by some types of RDDs are ejected and leave the influence of the thermally buoyant cloud faster than previously assumed
- Investigation of improved methods for coupling particles to the rising buoyant gas cloud
- Evaluation of RDD models against data from recent Israeli and Canadian RDD field experiments using radionuclide surrogates