LLNL-PRES-493091

Application of FDA Food Contamination Protective Action Guidelines for MSL

Steven G. Homann

National Atmospheric Release Advisory Center Lawrence Livermore National Laboratory Livermore, California

MSL Radiological Contingency Plan Meeting Kennedy Space Center, Florida August 3, 2011

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

FDA Provides Guidance for Addressing Contaminated Food

ACCIDENTAL RADIOACTIVE CONTAMINATION OF HUMAN FOOD AND ANIMAL FEEDS: RECOMMENDATIONS FOR STATE AND LOCAL AGENCIES

This document is intended to provide guidance. It represents the Agency's current thinking on the above. It does not create or confer any rights for or on any person and does not operate to bind FDA or the public. An alternative approach may be used if such approach satisfies the requirements of the applicable statute, regulations or both.

> Radiation Programs Branch Division of Mammography Quality and Radiation Programs Office of Health and Industry Programs

> > Document issued on: August 13, 1998

Comments and suggestions may be submitted at any time for Agency consideration to: Radiation Programs Branch (HEZ-240), Center for Devices and Radiological Health, 1350 Piccard Drive, Rockville, MD 20850. Comments may not be acted upon by the Agency until the document is next revised or updated. For questions regarding the use or interpretation of this guidance document contact Donald Thompson at 301-827-0012 or DLT@cdrh.fda.gov.

Additional Copies: World Wide Web/CDRH home page: http://www.fda.gov/cdrh or CDRH Facts on Demand at 1-800-899-0381 or 301-827-0111, specify number when prompted for the document shelf number.

> U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Center for Devices and Radiological Health Rockville, MD 20850

The food of concern for MSL is primarily produce, including leafy vegetables such as spinach and lettuce

Slide 2

FDA Derived Intervention Levels (DILs)

- A DIL is the concentration of a radionuclide in food at which point protective actions <u>should</u> be considered
 - For MSL, ²³⁸Pu is the driving radionuclide
 - FDA Guidance specifically addresses ²³⁸Pu food contamination due to an accident involving an RTG
- DILs are based on the assumption that contaminated food is eaten during the first year after an accident
 - Addressing food contamination is a <u>lower priority</u> during the Emergency Phase (~ first 4 days)
- DILs are based on the most limiting population and dose to the most sensitive organ/organ system
 - For ²³⁸Pu, the most sensitive population is three-month old infants
 - Dose to surface bone is the most limiting organ
- DILs assume no intervention

FDA Ingestion Protective Action Guides (PAGs)

	Dose Construct	Qualifier		
5 mSv (0.5 rem)	70-year CEDE	Whichever is		
50 mSv (5 rem)	70-year CDE to individual organ	more limiting		

CEDE = Committed Effective Dose Equivalent CDE = Committed Dose Equivalent

7/18/2014

Slide 4

Basic formula for computing a DIL

PAG (mSv)

DIL $(Bq/kg) = \frac{1}{f \times Food Intake (kg) \times DC (mSv/Bq)}$

Where:

DC

f

- Dose coefficient; the radiation dose received per unit of activity ingested (mSv/Bq).
 - = Fraction of the food intake assumed to be contaminated.
- Food Intake = Quantity of food consumed in an appropriate period of time (kg).

Dose Coefficients from FDA Table D-1

DOSE COEFFICIENTS (mSv/Bq)^(a)

	Age Group							
Radionuclide	3 month	1 year	5 years	10 years	15 years	Adult		
Sr-90 bone srfc	1.0E-03	7.4E-04	3.9E-04	5.5E-04	1.2E-03	3.8E-04		
Sr-90	1.3E-04	9.1E-05	4.1E-05	4.3E-05	6.7E-05	3.5E-05		
I-131 thyroid	3 7E-03	3.6F-03	2 1E-03	1.1E-03	6 9F-04	4 4F-04		
I-131	1.1E-04	1.1E-04	6.3E-05	3.2E-05	2.1E-05	1.3E-05		
Co 134	2 5E 05	1 SE 05	13E-05	14E-05	2.0E.05	1 0F 05		
Cs-134 Cs-137	2.0E-05	1.1E-05	9.0E-06	9.8E-06	1.4E-05	1.3E-05		
D., 102	775.06	5 1E 06	2 7E 06	1.7E.06	1 05 06	0 1E 07		
Ru-105 Ru-106	8.9E-05	5.3E-05	2.7E-00 2.7E-05	1.6E-05	9.2E-06	7.5E-06		
Pu-238 bone srfc	1.6E-01	1.6E-02	1.5E-02	1.5E-02	1.6E-02	1.7E-02		
Pu-238	1.3E-02	1.2E-03	1.0E-03	8.8E-04	8.7E-04	8.8E-04		
Pu-239 bone srfc	1.8E-01	1.8E-02	1.8E-02	1.7E-02	1.9E-02	1.8E-02		
Pu-239	1.4E-02	1.4E-03	1.1E-03	1.0E-03	9.8E-04	9.7E-04		
Am-241 bone srfc	2.0E-01	1 9E-02	1 9E-02	1 9E-02	2.1E-02	2.0E-02		
Au-241	1.2E-02	1.2E-03	1.0E-03	9.0E-04	9.1E-04	8.9E-04		

(a) Dose coefficients are from ICRP Publication 56 (ICRP 1989). The committed effective dose equivalents or committed dose equivalents are computed to age 70 years.

Annual Dietary Intake from FDA Table D-2

ANNUAL DIETARY INTAKES (kg/y) (a)

FOOD CLASS

AGE GROUP (years)

	< 1	1-4	5-9	10-14	15-19	20-24	25-29	30-39	40-59	60 & up
Dairy	208	153	180	186	167	112	98.2	86.4	80.8	90.6
(fresh milk) ^{(b}	(99.3)	(123)	(153)	(167)	(148)	(96.5)	(79.4)	(66.8)	(61.7)	(70.2)
Egg	1.8	7.2	6.2	7.0	9.1	10.3	10.2	11.0	11.4	10.5
Meat	16.5	33.7	46.9	58.4	69.2	71.2	72.6	73.4	70.7	56.3
Fish	0.3	2.5	4.0	4.9	6.1	6.8	7.6	7.1	8.0	6.3
Produce	56.6	59.9	82.3	96.0	97.1	91.4	99.1	102	115	121
Grain	20.4	57.6	79.0	90.6	89.4	77.3	78.4	73.7	70.2	67.1
Beverage	112	271	314	374	453	542	559	599	632	565
(tap water) ^(b)	(62.3)	(159)	(190)	(226)	(243)	(240)	(226)	(232)	(268)	
(k	(278)	. ,	• •		• •					
Misc	2.0	9.3	13.3	14.8	13.9	10.9	11.9	12.5	13.3	13.0
TOTAL ANNUAL	\bigcirc									
INTAKE, (kg/y)	418	594	726	832	905	922	937	965	1001	930
بالكلابي بالمريبي المريبي المراجع						1				

Note: To calculate a DIL, FDA uses the <u>TOTAL</u> diet, not just the applicable food class

7/18/2014

The FDA DIL for ²³⁸Pu is 2.5 Bq/kg

PAG (mSv)

f x Food Intake (kg) x DC (mSv/Bq)

DIL (Bq/kg)

The DIL for ²³⁸Pu will <u>increase</u> by a factor of 2.4 when the revised EPA PAG manual is approved

Current EPA Dose Conversion Factor:

Proposed EPA Dose Conversion Factor (Using the new ICRP 60 DCFs)

It will be advantageous to MSL to seek FDA's pre-approval to use the revised FDA DCFs

FRMAC uses a Derived Response Level (DRL) to determine the deposition contour value associated with the FDA DIL

$$\frac{\text{DIL * Y}}{\text{R}} \quad , \frac{\text{Bq}/\text{m}^2}{\text{R}}$$

where:

- **DRL** = Derived Response Level for Ingestion (Bq/m²)
- **DIL**_i = Derived Intervention Level (Bq/kg)
- **Y** = Crop yield (kg/m^2)
- R = Crop retention factor = the fraction of deposited material that is retained by the edible portion of the crop

The FRMAC DRL for ²³⁸Pu

Based on the new EPA PAG Manual, the DRL would increase to 1.6 E-03 µCi/m²

Conclusions

- FDA DILs are used to address <u>potential</u> ingestion dose during the first year after the incident
- Addressing food contamination is a <u>lower priority</u> during the Emergency Phase (~ first 4 days)
- > Summary of FRMAC DRLs:

DRL _{Current}		0.00068	μ Ci/m ²
DRL _{Proposed}	=	0.0016	μCi/m²

- Measurement Limit of Sensitivity (LOS):

 - FIDLER = Field Instrument for the Detection of Low Energy Radiation
 - ECAM = Environmental Continuous Air Monitor
 - *LOS_{ECAM} = 0.002 rem = (0.002 rem x 0.003 m/s) / (4.17 E-04 m³/s x 1.71 E+08 rem/Ci)
 - = 8.4 E-11 Ci/m² = 0.00008 uCi/m²

