# Assessing Regional Shelter Quality

August 2011

Technical POCs: Michael Dillon and Steve Homann Lawrence Livermore National Laboratory dillon7@llnl.gov, homann1@llnl.gov





The Department of Homeland Security sponsored the production of this material under the Department of Energy contract DE-AC52-07NA27344 for the management and operation of Lawrence Livermore National Laboratory.

LLNL- PRES-495979

# Acknowledgements

## **KEY PERSONNEL**

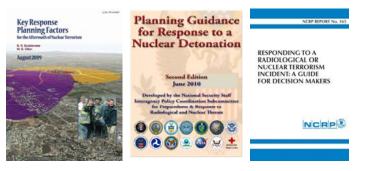
Michael Dillon Jave Kane Brooke Buddemeier Steve Homann Miguel Castro Rich Belles

Diane Bonner

David Price Priya Doshi Kathleen Fischer

The authors would like to thank Dr. Michael Bradley, Dr. Gayle Sugiyama, Ms. Connee Foster, Mr. Kevin Foster, Mr. Ronald Baskett, Ms. Brenda Pobanz, Mr. John Gash, Ms. Alex Ballard, Ms. Sabrina Fletcher, Mr. Thom Tegge, Dr. John Nasstrom, Dr. Matt Dombrowski, Mr. Lee Davisson, Mr. Eric Archibald, and Ms. Erika Olsen of the Lawrence Livermore National Laboratory; Mr. Steve Maheras of the Pacific Northwest National Laboratory; Mr. Dennis Schaeffer of Science Applications International Corporation; Mr. Philip Schneider of the National Institute of Building Sciences; Dr. Richard Sextro of the Lawrence Berkeley National Laboratory; Dr. Larry Brandt at Sandia National Laboratory; Dr. Charles Kircher at Charles Kircher and Associates; Mr. David Montague at ABS Consulting; Mr. Neil Blais at Blais and Associates; and Ms. Hope Seligson at MMI Engineering for their assistance.

The authors gratefully acknowledge the project funding provided by:

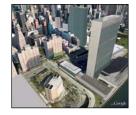

- DHS FEMA, CRNE Branch (Donald Daigler)
- DHS Science and Technology (Patricia Underwood)
- DHS FEMA Planning Coordination and Assistance Branch (Donald Lumpkins)



# Knowing Buildings Matters...

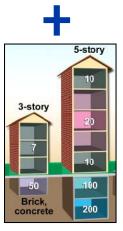
People are usually inside, Outside 8% Inside 87% Vehicle 5%

# Sheltering is a classic response strategy,




#### And being inside makes a difference...

Outdoor RadiationShelter QualityImage: Shelter Quality<


This effort focuses on nuclear fallout (external gamma radiation).

# Radiation Shielding – A General Approach



#### Sort the regional buildings into common types

- Categorize by: Construction, Basements, Building Height
- Identify how many of these building types exist in a given region



# For each building type, determine the protection provided. Protection determined by:

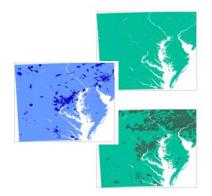
- Radiation shielding, which depends on construction material (e.g. concrete, wood)
- Distance to fallout, which depends on building height and geometry



### **Determine the Regional Shelter Quality**

 Assess the shelter quality in a region by combining building protection with the regional building stock




# Products of the prototype capability

#### Maps of Regional Shelter Quality

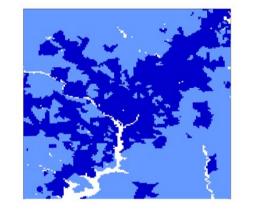
Local Shelter (best nearby shelter)

X

- Shelter in Place (best shelter within a building)
- No Response (people stay put)



#### Maps of Indoor Radiation


Combine regional shelter quality with outdoor radiation estimates

#### **Outdoor Radiation**



Potential 10 R Gamma Exposure

#### **Regional Shelter Quality**



Local Shelter

#### **Indoor Radiation**



Potential 10 R Gamma Exposure



URBAN SHIELDING

Images for illustrative purposes only. For visualization purposes, surface water locations have been rendered white.

## **Building information**

# National-level information exists and is useful for national planning.

- DHS FEMA HAZUS program
- National Geospatial-Intelligence Agency (data used under the auspices of the DHS IMAAC and DOE NARAC programs).
- DOE Residential Energy Consumption Survey

# But national (and local) planning also requires local information

- Tax assessor data
- Population surveys
- Zoning and building codes

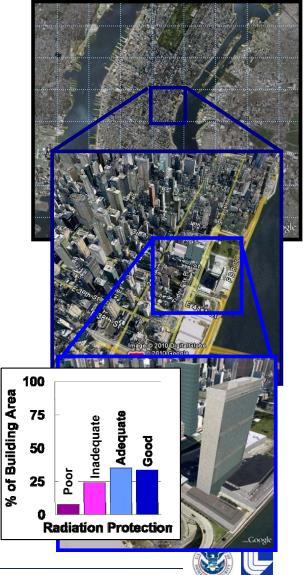






### Two approaches are needed...

#### Svalin – a "tops down" approach


Uses nationally representative data to estimate regional and national shelter quality.

#### PFscreen – a "bottoms-up" approach

Uses local building data to estimate building and neighborhood shelter quality.

These are complementary capabilities:

- National data fills in missing local data.
- Local data and analyses are used to update nationally representative data.
- Local shelter quality results provide a check on the national results.



# Estimating building protection

### Extensive Historical Work

- U.S. Civil Defense Program
- Environmental remediation of nuclear accidents

# But how do modern U.S. buildings perform?

## Our Approach

- Initial estimates using historical work
- Identify key building parameters
- Develop fast-running screening tool
- Assess modern construction

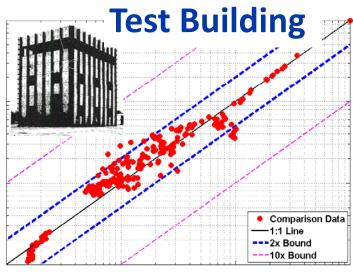
| Structure                       | Dose transmission<br>factor |
|---------------------------------|-----------------------------|
| Three feet underground          | 0.0002                      |
| Frame house                     | 0.3-0.6                     |
| Basement                        | 0.05-0.1                    |
| Multistory building             |                             |
| (apartment type):               |                             |
| Upper stories                   | 0.01                        |
| Lower stories                   | 0.1                         |
| Concrete blockhouse<br>shelter: |                             |
| 9-in. walls                     | 0.007-0.09                  |
| 12-in. walls                    | 0.001-0.03                  |
| 24-in. walls                    | 0.0001-0.002                |
| Shelter, partly                 |                             |
| above grade:                    |                             |
| With 2 ft earth cover           | 0.005-0.02                  |
| With 3 ft earth cover           | 0.001-0.005                 |

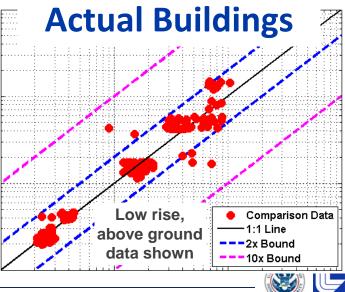


# PFscreen – A building protection screening model

Simple

Input limited to small number of key building characteristics


Fast


Individual building analysis in 10's of seconds on laptop

#### Tested

Output agrees with measurements within a factor of 2 for simple buildings

Further upgrades and testing in progress





# **Revisiting HAZUS buildings – preliminary results**

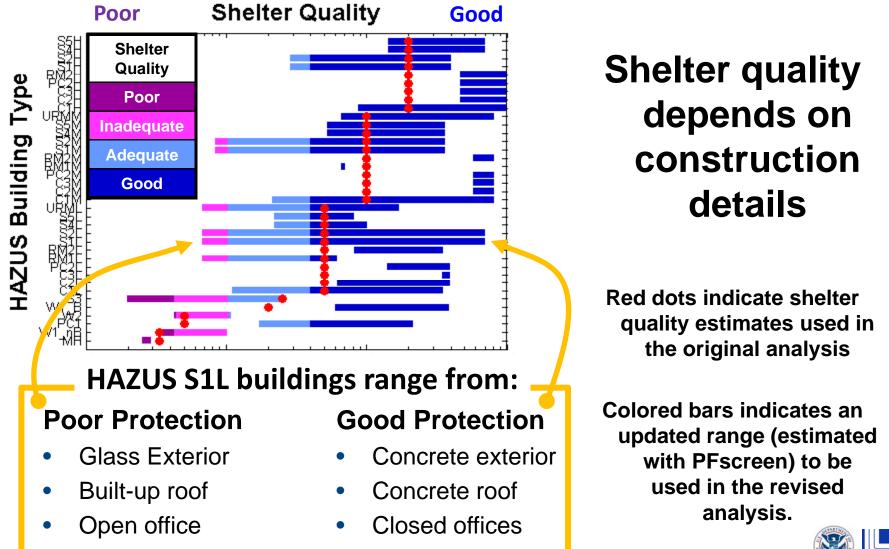





Figure depicts work in progress and should not be used for decision making purposes.

# Updating national regional shelter analyses

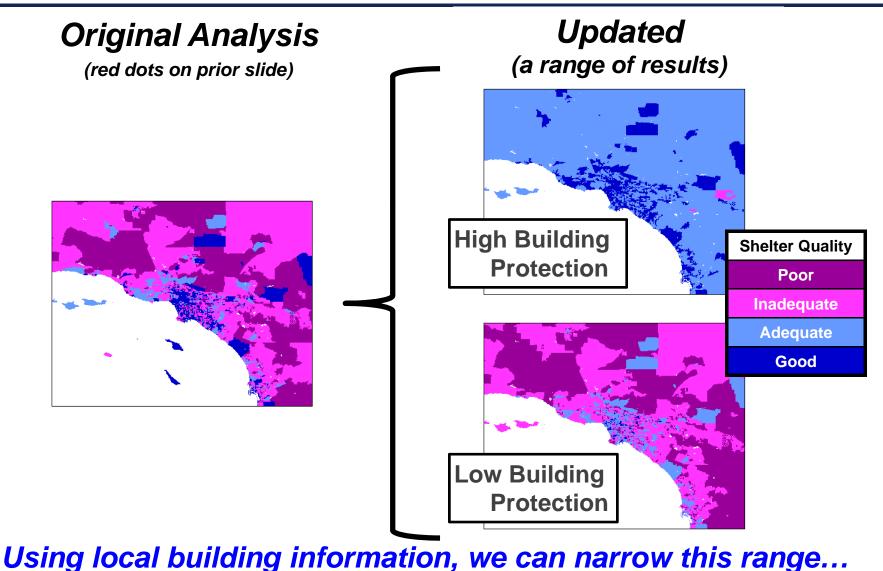
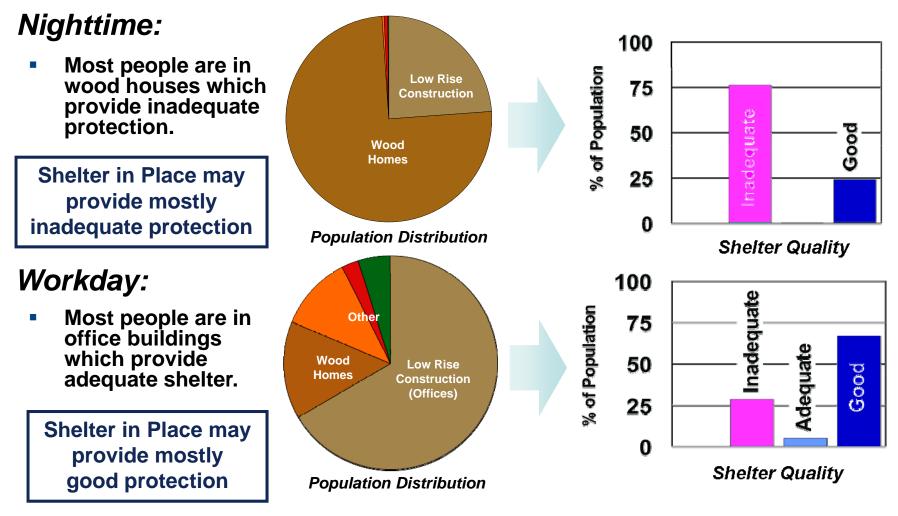




Figure depicts work in progress and should not be used for decision making purposes.

# And one more thing - time of day can matter...



Illustrative calculation: Data from a Northeast U.S. census tract. Wood homes do not have basements. Building categories and protection factors for discussion purposes only.





### **Project Status – Work in Progress**

At the local level, we're working with Clark County and National Capital Region officials to determine:

- What building information is available.
- How local officials plan to use these results.

On the technical side, we are:

- Streamlining model inputs/outputs to:
  - Utilize available local data
  - Meet local planning needs
- Updating national shelter analyses.
- Upgrading and (partially) validating models.





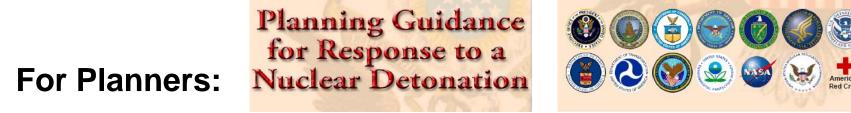
### **Next Steps**

# Continuing working with national and local partners to:

- Acquire and interpret local data
- Support use of HAZUS data and shelter analysis results
- Refine requirements for local planning capability

#### On the technical side:

- Continue capability development
  - Complete model upgrades
  - Simplify user interface
- Continue verification, validation, and peer review
- Develop end user and technical documentation
  URBAN SHIELDING






## **BACKUP SLIDES**

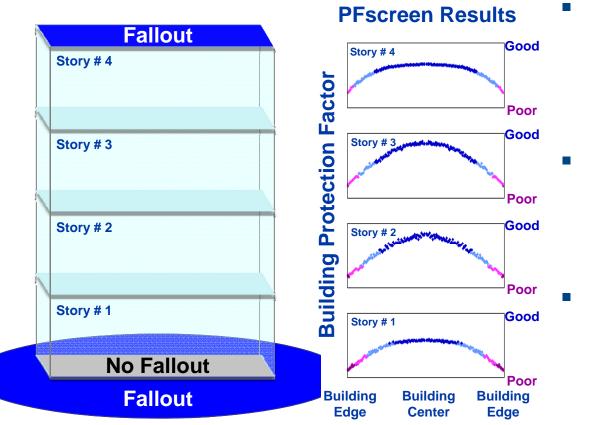


### What do we do with shelter quality estimates?



"Planners should consider areas where adequate shelter is not readily available and develop options for protection of the public including information and awareness messaging, evacuation plans, . . . selfprotection, . . . [and] a public shelter program"

(PGfRND, p.56, emphasis added)


#### For Responders:

"Rapidly defining populations or areas that need early evacuation is a high priority... People occupying inadequate shelter may need to be selectively evacuated early to avoid acute exposures and minimize overall dose" (PGfRND, p.53, emphasis added)



URBAN SHIELDING

## PFscreen



Simple

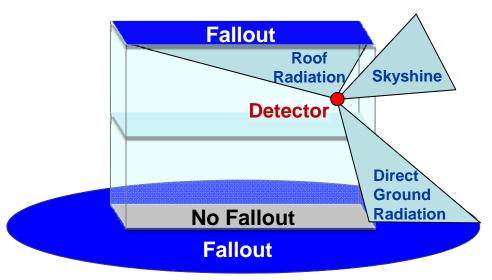
Input limited to small number of key building characteristics

Fast

Individual building analysis in 10's of seconds on laptop

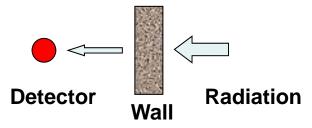
Tested

Output agrees with measurements within a factor of 2 for simple buildings

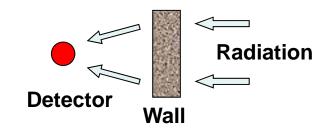

Current model is a prototype. Model verification and validation is on-going. Model is not appropriate for all buildings.



## The PFscreen Model – Overview


#### **Radiation Sources**

- Ground Contamination
  - Direct
  - Skyshine (scattered in the air)
- Roof Contamination




### **Building Shielding**

Loss of direct radiation



Scattering (buildup)



