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suMMARY

Based on a mixed variational principle and the finite
element metho~ a model for efficiently generating mass-
consistent wind fields over continuous terrain has been
developed. Two numerical examples are presented to
demonstrate the applicability of the model.

L INTRODUCTION

As part of the modernizadon effbrts of the Atmospheric
Release Advisory Capability (ARAC) projec~ we have
developed a new diagnostic model for generating mass-
consistent wind fields over continuous &main. Such wind
fields can be used to drive ARAC’S new dispersion model
LOD 11. This model is going to replace our current
operational code MATHEW2, which uses stair-step
topography and constant grid SJXtCillgS.

Our new model is based on a mixed variational
principle and the ftite element method (FEM) for spatial
discretization. Two conjugate gradient solvers are
implemented for efilciently solving the Poisson equation
resulting from the numerical formulation. The finite element
method is employed to effectively treat continuous terrain
and variable grid resolution. It is based on a grid-point
representation of the wind fields in contrast to the flux-
base~ staggered grid representation ofien used in finite
difference approaches. Additionally, the model offers a very
flexible treatment of boundary conditions and the abiiity to
preserve velocity at desired grid-points for cells in which
wind observations are located. Also included in our model
are map projection fhctors and differential weighting for the
horizontal and vertical velocity adjustments to reflect the
effects of atmospheric stabiiity.

II. NUMERICAL MODEL

A. Governing -OILS

Tle underlying theoretical basis of our mode~ with the
assumption of constant density, is the following fbnctiomd,

in the above equatio~ (ti,f,ti) and (w v, w) are the
components of the initial and adjusted velocity fields, I is
the Lagrange multiplier, a~ and a, are the Gauss precision
moduli, and ~ is the domain under consideration.
Equation (1) is a mixed variational principle? for which the
solution (u, v, w; A) is a saddle poin~ rather than an

extremurn point. The solution corresponds to a minimum
with respect to the dii%ence between the adjusted and the
initial velocity fiel& and a maximum with respect to the
Lagrange multiplier. With this approach, the mass-
conservation requirement will be enforced as a strong
constraint.

It can be shown that the solution of (1) via taking
& = Oleads to the following Euler-Lagrange equations,
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in S2, and

Mu”=o (4)

on the boundary. In equation (4), &n is the first variation of
the adjusted velocig in the normal direction. This equation
implies tha~ on the boundary, either

The former corresponds to a boundary where the normal
velocity is specifie~ such as u. = ill on an inflow plane or
u.= O on a solid boundary, while the latter corresponds to
“flow through” boundaries (which is a natural boundary
condition fm the velocity).

B. Ftilte Element Discretization

The FEM with piecewise polynomial basis functions is
used for spatial discretization of(1). Specifically trilinear
functions defined on a general hexahedron are used for the
velocity and piecewise constants are used for the field of
Lagrange multiplier. Upon using the above approximations
and setting & = O, a coupled system of algebraic equations
is obtainem

MU+ CA=MO (a
and

In the above equations, ~ is a vector containing all the

\)nodal values of (w v, w), V is a vector for z fi,fi , and A
is a vector for the Lagrange multiplier of al elements. M is
the mass matrix of size 3n x 3G C is the gradient matrix of
size 3n x m, and CT, the transpose of C, is the divergence
matrix. There are n nodes for the velocity and m elements
tbr 4. Akematively, equations (5) and (6) could be obtained
by applying the Galerlcin method of weighted residuals to
(2) ~d (3) and integrating by parts the terms involving 2.

Equations (5) and (6) coul~ in principle, be solved as a
coupled system. However, such an approach may prove
impractical for large problems, due to excessive memory and
CPU requirements. We implemented a cost-effective
alternative developed by Gresho et al?, which uses, in place
of the original consistent mass matrix, a lumped (via row-
sum) mass matrix (denoted below as ML), and solves the
following equivalent uncoupled system,

and

u = u - M;’C2 (8)

To efficiently solve large linear systems of equations
such as (7), we use the incomplete Cholesky-conjugate
gradient (ICCG) method of Kershaws and the diagonally
scaled conjugate gradient (DSCG) method.

C. Txeatment of Terrain

One of the advantages of the finite element method is i
that all calculations are camied out directly in the physical
space of (x, y, z), although our inputloutput data are
associated with the (x, y, ~Z) coordinate system. Such an
approach can save computational time and, more
importantly, guarantees that the resulting wind field is
mass-consistent in the physical space. To impose the
bounday condition of no-penetration on the ground surface,
local transformation matrices of size 3 x 3, which relate the
Cartesian velocity components to those in the local
nozmalhangential directions, are first evaluated for all nodes
on the terrain surface. l’hese transformation matrices, defined
by the direction cosines of the consistent normal dtion
derived by Engleman et al$, are then inccnporated into the
global gradient and divergence matrices (C and C~, thus
allowing a direct computation of velocity components in the
local normalhangential directions and the specification of
zero normal velocity component on the ground surfiwe.

III. NUMERICAL EXAMPLES

A. Flow Around a Hemispheric Hiil

To test the accuracy of our model, we calculated the
potential flow around a hemispheric hill. The analytic
solution for this problem, in terms of the velocity potential
Iimctio& is

(9)

in which UOis the ftee stream velocity and rOis the radius
of the hall. The velocity components corresponding to (9)
m
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v = -3uoa3q~12r5 (lo)

w = -3u#z?: hs

In the numerical simulation, a hemispheric hill of
radius 1 km was placed in the center of a computational
domain of 5km x 51an x 2km in the downwind crosswind
and wertical directions, respectively. The computational
mesh (or grid) consists of 50 x 50x 30 elements (or zones)
and the mesh is basically uniform in the two horizontal
directions and gradually graded in the vertical direction,
with finer zones near the ground. To account for the



relatively short dktance from the inflow plane to the hio,
exact velocity components as defined in (1O)were specified
on that plane. No-penetration was imposed along the terrain
surface and the ‘flow-through’ boundary condition Wm
assumed on all the remaining boundaries. A uniform wind
of UC=] m/s was used as the initial guess. The entire
simulation took 26 sec on a DEC Alpha machine.

hr Fig. 1, maasconsistent velocity vectors on the center
plane and the 100-m horizontal plane are displayed. The
wind field exhiblta the stagnation pointa at the f?ont and the
rear of the hW and shows the pntential flow following the
surface of the hill. The predicted maximum speed at the
peak of the hill is 1.56 rxrfs,versus the theoretical value of
1.50 ml?..

Fig. 1. Pm&ted vekwity vectnraon z = 100 m and the
carterplarrea

The 0.15 m/s apeed deviation contour (which
corresponds to 10% of the theoretical maximum speed) frnm
the exact solution is ahown in Fig. 2. Most of the
computational domain has speed deviations less tharr 0.15
11’I/s,but larger errors exist near the lower part of the
hemisphere. Greater errnra are naturally expected in this
region, because the mesh resolution k relatively coame to
resolve the ateepeat slopes thera. ‘fire overall accumcy of

the solution is much higher; the root-mean-square etror of
the speed deviations for the entire domain is only 0.032
mls.

B. Application for the SmrFrancisco Bay ,L&~

[n this example, our model is applied to generate the
wind fields for an emergency response scenario in the San
Fmnc.isco Bay Area, using interpolated wind data from the
new ARAC meteorological database (see Sugiyama and
Chan7). The grid is 100 km by 100 km by 3 km, with 81
grid points in each horizontal direction and 31 grid pointa
in the vertical direction. Tbe grid has 10 m vertical
resolution near the grmmd. The entire simulation took 87
wc on a DEC Alpha machine.

Fig.3 shows the mass-consistent wind vectors on the
10 m AGL plane, together with tbe surface observatinm
@otted within the ci~cles). 1. geneml, only small changes
were made to the initial winds by the msss-adjus~ent
model. In Fig. 4, wind vectors on the y-z plane in the
middle of the grid are shown, with the vertical wind
components scaled by a factor of 10. The variable grid
employed and the terrain following adjusted velncity vectors
cmr be seen in this figure. The magnitude of the vertical
wind induced by the topography is not very large, which is
cnnsiatent with the small changes nbserved above for the
horizontal winda.

Fig. 3.

32.1+ ,...!05 ,.6.,0, ,.;,., 6..:,0$
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Mass-consistent surface wind tiled at 10 m AGL.
Every thii vector is plotted. Surface wind
observations are plotted with!n the circles.

Fig. 2. ‘fhe contour of 0.15 UI/Sspeed deviation from exact
anlution
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Fig. 4. Wind vectors on the cross windplane at x = 570 km

IV. CONCLUSION

A new model based on a mixed variational principle
and the FEM has been developed for efficiently generating
mass-consistent wind field over continuous terrain. Reds
fkom our eady testing and applications indicate that the
model is robust and sufficiently f- for real-time assessment
purposes. The model will be ftuther evaluated in practical
applications using measured data and forecast fields.
Additional physics and parameterhmions, including spatial
variations of the Gauss precision moduli depending on
atmospheric and topographical conditions, will be
implemented in the near fixture.
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